UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE
 Department of Physics

MAIN EXAMINATION 2016

Tittle of paper:
Analogue Electronics II

Course Code: P312
Time allowed: Three Hours

Instructions:

1. To answer, pick 5 from 7 questions in the following pages.
2. The answer must be written in the space provided in the question book; solutions found elsewhere will be considered invalid. Use the answer book as scratch pad. Both question and answer book must be handed-in and marked with ID number.
3. This paper has 8 pages including this page.

> DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Q1: (20 pts) List (no derivation) A_{v}, A_{i}, R_{i}, and $R_{0}(3$ pts each) of the single BJT (or FET) amplifier of any one configuration of these, CE , CB , and CC ; and also the rough range of each spec as well (2 pts each).

config	$\mathrm{R}_{\text {in }}$	R_{ot}
	equ	equ
	vlu	vlu
	A_{v}	A_{i}
	equ	equ
	vlu	vlu

Q2: ($\mathbf{2 0} \mathrm{pts}$) Give 2 examples of positive feedback circuit in schematic diagram, (i)(5 pts). wideband feedback and (ii)(5 pts). narrowband feedback. (iii)(10 pts) Compare the differences of the output voltage time trace.

Q3: ($\mathbf{2 0} \mathrm{pts}$) Fig. Q3-1 shows an active op filter. (i). Derive an expression in Laplace variable for the transfer function of this filter. (ii). Determine which filter is this? (iii). Calculate the cutoff frequency as the components values given in the figure. And (iv). Draw Bode frequency response
 plot. (5 pts each)

Q4: ($\mathbf{2 0} \mathrm{pts}$) Given $\mathrm{Vs}=1 \mathrm{~V}_{\mathrm{rms}}$, the g_{m} of the FET, 12 mMho in the circuit, and all components values marked in the circuit.
(i). Calculate the FET power output to the speaker under a direct coupled the speaker load 16Ω.
(ii). Use an ideal transformer (replace the C_{∞} at output with the trans- former) to
 match the load 16Ω. Design the transformer turn-ratio to let the load absorb the maximum power. Find the maximum power to the speaker. (10 pts each)

Q5: ($\mathbf{2 0} \mathrm{pts}$) A Wien amplifier is shown on the right. (i)(10 pts). Derive the voltage amplification factor in terms of the component symbols, given $\mathrm{R}_{\mathrm{s}}=0$. (ii)(4 pts). Find the poles of the amplification factor. Discuss the stability of the amplifier in terms of the resistor ratio, $R_{2} / R_{1}=\eta$; that is, discuss the boundary of η. On one side of the boun-
 dary, the circuit is a stable BPF amplifier; while on the other side the circuit is a frequency oscillator. (iii)(3 pts) Determine the boundary, and (iv)(3 pts). Find the oscillator or peak BPF frequency.

Q6: ($\mathbf{2 0} \mathbf{~ p t s) ~ A n ~ e l e c t r i c ~ c i r c u i t ~ s h o w n ~ i n ~ F i g . ~}$
Q6-1 is excited by a voltage source, $\mathrm{v}(\mathrm{t})=1$. $\cos (\omega \mathrm{t})$. Using analogue computing, find the current in the circuit. (i)(5 pts). Give the circuit loop equation. (ii)(10 pts). With op integrators (stable than differentiators), design the computing circuit. (iii) (5 pts). Mark all components values and the result output point.

Fig. Q6-1

Q7: ($\mathbf{2 0} \mathrm{pts}$) A 2-BJT linear feedback amplifier is shown on the right. (i)(5 pts) Identify whether the feedback is positive or negative. (No gauss but mark as in the class lecture) Find (ii)(5 pts) A_{0} and (iii) (5 pts) A_{f}, and (iv). (5 pts) β and check if $\beta=\mathrm{R}_{\mathrm{e}} /\left(\mathrm{R}_{\mathrm{e}}+\mathrm{R}_{\mathrm{f}}\right)$. Consider the two BJT has
 the same parameters. (hint: set R_{f} symbollical and all the rest numerical, and calculate open loop gain A_{0} as $\mathrm{R}_{\mathrm{f}} \rightarrow \infty$ and A_{f} as $\mathrm{R}_{\mathrm{f}}=8 \mathrm{~K}$).

