UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
MAIN EXAMINATION 2015/2016
TITLE OF PAPER : CLASSICAL MECHANICS
COURSE NUMBER : P320
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS ELEVEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) A single frequency light ray travels through $P_{1}:\left(0, h_{1}\right)$ in medium one with velocity v_{1} to reach $P_{2}:\left(L,-h_{2}\right)$ in medium two with velocity v_{2} as shown in the diagram below :

If one of the possible ray passage from $P_{1}:\left(0, h_{1}\right)$ to $P_{2}:\left(L,-h_{2}\right)$ is through $P:(x, 0)$ with $0 \leq x \leq L$ on the interface $y=0$, then the total time $T(x)$ of this light ray travel from $P_{1} \rightarrow P(x, 0) \rightarrow P_{2}$ can be written as
$T(x)=\frac{\sqrt{x^{2}+h_{1}{ }^{2}}}{v_{1}}+\frac{\sqrt{(L-x)^{2}+h_{2}{ }^{2}}}{v_{2}}$
(i) Use the least time principle, i.e., $\delta T(x)=0$, to find the least time ray passage $P_{1} \rightarrow P_{0}\left(x_{0}, 0\right) \rightarrow P_{2}$ and show that x_{0} satisfies

$$
\begin{equation*}
\frac{x_{0}}{v_{1} \sqrt{x_{0}{ }^{2}+h_{1}^{2}}}=\frac{L-x_{0}}{v_{2} \sqrt{\left(L-x_{0}\right)^{2}+h_{2}^{2}}} \tag{2}
\end{equation*}
$$

(4 marks)
(ii) Show that the eq.(2) can be simplified to be the following well-known law of refraction that $n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$ where $n_{1} \& n_{2}$ are the index of refraction for medium one and two respectively.
(3 marks)
(b) For a particle of mass m acted on by an earth gravitational force of $\vec{F}=-\vec{e}_{y} m g$ and undergoes a projectile motion near the earth surface in a $x-y$ plane where along the horizontal x direction there is no force acting on the particle.

Question one (continued)

(i) Write down the Hamiltonian H of the system, i.e., $H\left(x, y, p_{x}, p_{y}\right)$, and show that $H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+m g y$.
(4 marks)
(ii) From the definition of the Poisson brackets, i.e.,
$[F, G] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}}-\frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}}\right)$,
evaluate $[x, H],[y, H],\left[p_{x}, H\right]$ and $\left\lfloor p_{y}, H\right\rfloor$.
(iii) For an equation of the type $\frac{d u}{d t}=[u, H]$ the specific solution of $u(t)$ is given by the following series expansion
$\left.\left.u(t)=u_{0}+[u, H]_{0} t+[[u, H], H]_{0} \frac{t^{2}}{2!}+[\llbracket u, H], H\right], H\right]_{0} \frac{t^{3}}{3!}+\cdots \cdots \cdots$
where subscript 0 denotes the initial conditions at $t=0$.
Use the above relation to show that for the given Hamiltonian, the specific solution of $x(t)$ and $y(t)$ are given by
$\left\{\begin{array}{l}x(t)=x_{0}+\frac{p_{x, 0}}{m} t \\ y(t)=y_{0}+\frac{p_{y, 0}}{m} t-\frac{g}{2} t^{2}\end{array}\right.$
where x_{0} and $p_{x, 0}$ are the initial x-position and x-momentum and y_{0} and $p_{y, 0}$ are the initial y -position and y -momentum . (10 marks)

Question two

A particle of mass m is constrained to slide freely on the inner surface of a stationary cone of half-angle α as shown in the diagram below.

The origin O is chosen to be at the bottom of the cone. Assuming the bowl surface is frictionless and the only explicit force acting on the particle is gravitational force with its acceleration g along $-z$ direction.
(a) (i) Write down the Lagrangian for the particle in terms of $\rho \& \phi$ and show that
$L=\frac{1}{2} m\left(\csc ^{2}(\alpha) \dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right)-m g \rho \cot (\alpha)$.
(Hint : $\vec{v} \equiv \frac{d \vec{s}}{d t}$ and for cylindrical coordinate system one has $z=\rho \cot (\alpha)$ for
the cone surface and $\left.(d \vec{s}) \bullet(d \vec{s})=(d s)^{2}=(d \rho)^{2}+\rho^{2}(d \phi)^{2}+(d z)^{2}\right)$
(ii) Write down their respective equations of motion for $\rho \& \phi$.
(5 marks)
(iii) Write down their canonical momenta $p_{\rho} \& p_{\phi}$ and show that p_{ϕ} is a constant.
(2 marks)
(b) (i) Here we can use $H=T+V$ short cut instead of the definition
$H=\sum_{\forall i}\left(p_{i} \dot{q}_{i}\right)-L$ to write down the Hamiltonian of the system (explain briefly why so) and deduce that
$H=\frac{\sin ^{2}(\alpha) p_{\rho}{ }^{2}}{2 m}+\frac{p_{\phi}{ }^{2}}{2 m \rho^{2}}+m g \rho \cot (\alpha)$
(1+6 marks)
(ii) From the Hamiltonian in (b)(i), write down the equations of motion of the system.

For each equation obtained here, point out its equivalent equation obtained in (a).
($4+2$ marks)

Question three

(a) The orbital equation of the two-body central force with potential $V(r)=-\frac{k}{r}$ is given as $\frac{\alpha}{r}=1+\varepsilon \cos (\theta) \quad$ where $\quad \alpha=\frac{l^{2}}{\mu k} \quad \& \quad \varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}}$
(i) Set $r=\sqrt{x^{2}+y^{2}}$ and $\cos (\theta)=\frac{x}{\sqrt{x^{2}+y^{2}}}$ and transform the above orbital equation into the following Cartesian form $k_{1} x^{2}+y^{2}+k_{2} x+k_{3} y+k_{4}=0$. Write down k_{1}, k_{2}, k_{3} and k_{4} in terms of α and ε. (4 marks)
(ii) The orbital equation in (c)(i) would represent a parabolic orbit if $k_{1}=0$. Show that this condition is equivalent to the condition that $E=0$.
(iii) The orbital equation in (c)(i) would represent a circular orbit if $k_{1}=1$. Show that this condition is equivalent to the condition that $\quad E=-\frac{\mu k^{2}}{2 l^{2}} \equiv V_{\text {min }}$
(3 marks)
(b) If an earth satellite of mass 500 kg has a pure tangential speed $v_{\theta}(=r \dot{\theta})=9,000 \mathrm{~m} / \mathrm{s}$ at its near-earth-point 800 km above the earth surface,
(i) calculate the values of l and E of this satellite,
(ii) calculate the values of the eccentricity ε and show that the orbit is an elliptical orbit. Also calculate its semi-major axis a, semi-minor axis b and period.
(6 marks)
(iii) what should be the value of the v_{θ} at the same given near-earth-point such that the satellite would maintain a circular orbit?
(Hint : $E=\frac{1}{2} \mu v_{\theta}^{2}-\frac{k}{r} \xrightarrow{\text { circular orbit }}-\frac{k}{2 r}$)
(iv) Determine v_{θ} at the same given near-earth-point such that the satellite maintains a parabolic orbit?
(2 marks)

Question four

(a) If a person, near the earth surface at a northern latitude λ, fired a bullet of speed v_{0} at a target situated at his north direction ($-\vec{e}_{x}$ direction) of distance L away from him. Assuming he has a perfect rifle and the time T for the bullet hitting the target is short and $T \approx \frac{L}{v_{0}}$ (i.e., neglecting the gravitational bending and assuming the bullet is moving along -x direction with constant speed v_{0}). The bullet will miss the target by a distance d resulting from the Coriolis force $\left(-2 m \vec{\omega} \times \vec{v}_{r}\right)$.
(i) Show that

$$
\begin{aligned}
& d=\frac{\omega L^{2}}{2 v_{0}} \sin (\lambda) \\
& \left(\text { Hint }: \quad \vec{a}_{e f f} \approx-2 \vec{\omega} \times \vec{v}_{r}, \vec{v}_{r} \approx \vec{e}_{x}\left(-v_{0}\right), \vec{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\vec{e}_{z}(\omega \sin (\lambda))\right)
\end{aligned}
$$

(ii) The earth makes one cycle of self-rotation in a day, calculate the value of the earth's self-rotational speed ω in terms of $\mathrm{rad} / \mathrm{s}$. Then calculate the value of d if $v_{0}=2000 \mathrm{~m} / \mathrm{s}, L=3000 \mathrm{~m} \quad \& \quad \lambda=30^{\circ}$
(3 marks)
(b) Referring to the diagram above and considering the body coordinate system (x, y, z) has the same origin as the earth's fixed inertial system, i.e., center of the earth. Hanging a motionless simple pendulum of length L and mass m near the earth surface at a northern latitude λ, the pendulum is supposed to pointing direct downward along $-\vec{e}_{z}$ direction. Show that the pendulum is pointing toward a direction not exactly along $-\vec{e}_{z}$ direction, i.e., true downward direction pointing toward the earth center, but pointing toward the ground with a small angular deviation of δ made with the true downward direction resulting from the centrifugal force $(-m \vec{\omega} \times(\bar{\omega} \times \bar{r}))$ as shown in the following diagram.

Question four (continued)

(i) Show that $\delta \approx \frac{\omega^{2} r_{E} \cos (\lambda) \sin (\lambda)}{g-\omega^{2} r_{E} \cos ^{2}(\lambda)}$
(10 marks)
(Hint : $\left.\vec{F}_{e f f} \approx \vec{e}_{z}(-m g)-m \vec{\omega} \times(\vec{\omega} \times \vec{r}) \& \vec{r} \approx \vec{e}_{z}\left(r_{E}\right)\right)$
(ii) The maximum value of δ happens at $\lambda=45^{\circ}$. Calculate this maximum value (in unit of radian) and then convert it to degrees.

Question five

Three particles of the same mass $m\left(=m_{1}=m_{2}=m_{3}\right)$ joined by several weightless rods to form a rigid body and is allowed to rotate about a fixed pivot point (chosen to be the origin 0^{\prime} or 0). Let $\left(\vec{e}_{1}{ }^{\prime}, \vec{e}_{2}{ }^{\prime}, \vec{e}_{3}{ }^{\prime}\right)$ and $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ be the unit vectors of the fixed (i.e., inertial system) and body coordinate system respectively as shown in the figure below.

Asume the above rigid body only rotates on the $x_{1}{ }^{\prime}-x_{2}{ }^{\prime}$ plane with the angular velocity $\vec{\omega}=\dot{\vec{\theta}}=\vec{e}_{3}{ }^{\prime} \dot{\theta}=\vec{e}_{3} \dot{\theta}$ and the only force acting on the system is gravitational with $\vec{g}=\vec{e}_{1}{ }^{\prime} g$.
(a) (i) Find the three components of the total torque $\vec{N}\left(=\sum_{i=1}^{3} \vec{r}_{i} \times \vec{F}_{i}\right)$ on the rigid body along $\left(\vec{e}_{1}{ }^{\prime}, \vec{e}_{2}{ }^{\prime}, \vec{e}_{3}{ }^{\prime}\right)$ directions. In other words, write $\vec{N}=\vec{e}_{1}{ }^{\prime} N_{1}{ }^{\prime}+\vec{e}_{2}{ }^{\prime} N_{2}{ }^{\prime}+\vec{e}_{3}{ }^{\prime} N_{3}{ }^{\prime}$ and find $N_{1}{ }^{\prime}, N_{2}{ }^{\prime} \& N_{3}{ }^{\prime}$. Show that $N_{1}{ }^{\prime}=0=N_{2}{ }^{\prime} \& N_{3}{ }^{\prime}=-2 m g a \sin (\theta)\left(1+\cos \left(30^{\circ}\right)\right)$
(Hint : $\left\{\begin{array}{l}\vec{r}_{1}=\vec{e}_{1}{ }^{\prime} a \cos \left(\theta-30^{\circ}\right)+\vec{e}_{2}{ }^{\prime} a \sin \left(\theta-30^{\circ}\right) \\ \vec{r}_{2}=\vec{e}^{\prime}{ }^{\prime} 2 a \cos (\theta)+\vec{e}_{2}{ }^{\prime} 2 a \sin (\theta) \\ \vec{r}_{3}=\vec{e}_{1}{ }^{\prime} a \cos \left(\theta+30^{\circ}\right)+\vec{e}_{2}{ }^{\prime} a \sin \left(\theta+30^{\circ}\right)\end{array} \&\left\{\begin{array}{l}\vec{F}_{1}=\vec{e}_{1}{ }^{\prime} m g \\ \vec{F}_{2}=\vec{e}_{1}{ }^{\prime} m g \text { and } \\ \vec{F}_{3}=\vec{e}_{1}{ }^{\prime} m g\end{array}\right.\right.$

$$
\sin (A-B)+\sin (A+B)=2 \sin (A) \cos (B) \quad)
$$

(ii) Find the three components of the total torque $\vec{N}\left(=\sum_{i=1}^{3} \vec{r}_{i} \times \vec{F}_{i}\right)$ on the rigid body along ($\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$) directions. In other words, write $\vec{N}=\vec{e}_{1} N_{1}+\vec{e}_{2} N_{2}+\vec{e}_{3} N_{3}$ and find $N_{1}, N_{2} \& N_{3}$. Show that $N_{1}=0=N_{2} \& N_{3}=-2 m g a \sin (\theta)\left(1+\cos \left(30^{\circ}\right)\right)$

Question five (continued)

$$
\text { (Hint: }\left\{\begin{array} { l }
{ \vec { r } _ { 1 } = \vec { e } _ { 1 } a \operatorname { c o s } (3 0 ^ { \circ }) - \vec { e } _ { 2 } a \operatorname { s i n } (3 0 ^ { \circ }) } \\
{ \vec { r } _ { 2 } = \vec { e } _ { 1 } 2 a } \\
{ \vec { r } _ { 3 } = \vec { e } _ { 1 } a \operatorname { c o s } (3 0 ^ { \circ }) + \vec { e } _ { 2 } a \operatorname { s i n } (3 0 ^ { \circ }) }
\end{array} \& \left\{\begin{array}{l}
\vec{F}_{1}=\vec{e}_{1} m g \cos (\theta)-\vec{e}_{2} m g \sin (\theta) \\
\left.\vec{F}_{2}=\vec{e}_{1} m g \cos (\theta)-\vec{e}_{2} m g \sin (\theta)\right) \\
\vec{F}_{3}=\vec{e}_{1} m g \cos (\theta)-\vec{e}_{2} m g \sin (\theta)
\end{array}\right.\right.
$$

(b) Referring to the fixed (inertial) coordinate system, the equation for pure rotational motion is $\dot{\vec{L}}=\vec{N} \quad \ldots$ (1) where $\quad \vec{L}=\sum_{i=1}^{3} \vec{r}_{i} \times \vec{p}_{i} \quad \& \quad \vec{p}_{i}=m \dot{\vec{r}}_{i} \quad(i=1,2,3)$.
(i) Find the three components of the total angular momemtum $\vec{L}\left(=\sum_{i=1}^{3} m \vec{r}_{i} \times \dot{\vec{r}}_{i}\right)$ on the rigid body along ($\vec{e}_{1}{ }^{\prime}, \vec{e}_{2}{ }^{\prime}, \vec{e}_{3}{ }^{\prime}$) directions. In other words, write $\vec{L}=\vec{e}_{1}{ }^{\prime} L_{1}{ }^{\prime}+\vec{e}_{2}{ }^{\prime} L_{2}{ }^{\prime}+\vec{e}_{3}{ }^{\prime} L_{3}{ }^{\prime}$ and find $L_{1}{ }^{\prime}, L_{2}{ }^{\prime} \& L_{3}{ }^{\prime}$. Show that $L_{1}{ }^{\prime}=0=L_{2}{ }^{\prime} \& L_{3}{ }^{\prime}=6 m a^{2} \dot{\theta}$
(ii) Use eq.(1) and the results from (a)(i) \& (b)(i), deduce the following equation of rotational motion for the given rigid body and show that

$$
\begin{equation*}
\ddot{\theta}=-\frac{g}{3 a}\left(1+\cos \left(30^{\circ}\right)\right) \sin (\theta) \tag{2marks}
\end{equation*}
$$

(c) Referring to the body coordinate system, the equation for pure rotational motion is the
following Euler equations that $\left\{\begin{array}{lll}I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=N_{1} & \cdots & \text { (2) } \\ I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}=N_{2} & \cdots & \text { (3) } \\ I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=N_{3} & \cdots & \text { (4) }\end{array}\right.$
where $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ should be chosen properly such that the inertial tensor I is a diagonal matrix.
(i) Our choice of $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ here does make the inertial tensor a diagonal matrix. Find the three non-zero diagonal elements of I and show that

$$
\begin{equation*}
I_{1,1}=I_{1}=\frac{1}{2} m a^{2}, I_{2,2}=I_{2}=\frac{11}{2} m a^{2} \& I_{3,3}=I_{3}=6 m a^{2} \tag{6marks}
\end{equation*}
$$

(ii) Since here one has $\omega_{1}=0=\omega_{2} \& \omega_{3}=\dot{\theta}$, use Euler equations and the results from (a)(ii) \& (c)(i), deduce the equation of rotational motion for the given rigid body and show that it's the same as the one obtained in (b)(ii).
(4 marks)

Useful informations

$V=-\int \vec{F} \cdot d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v]_{q, p} \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $\quad r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r}$ where $k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \quad\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $\quad m_{2} \gg \dot{m}_{1}$

For elliptical orbit,i.e., $0<\varepsilon<1$, then $\left\{\right.$ semi $-\min$ or $b=\frac{l}{\sqrt{2 \mu|E|}}$ period $\tau=\frac{2 \mu}{l}(\pi a b)$
$=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)$
for plane polar (r, θ) system with unit vectors $\left(\vec{e}_{r}, \vec{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\vec{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \vec{a}=\bar{e}_{r}\left(\ddot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$

Useful informations (continued)

$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$
$\vec{F}_{e f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\vec{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
\vec{r}^{\prime} refers to fixed(inertial system)
\vec{r} refers to rotatinal(non-inertial system) rotates with $\vec{\omega}$ to \vec{r} 'system
$\vec{R} \quad$ from the origin of \vec{r} ' to the origin of \vec{r}
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

