UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2015/2016

TITLE OF PAPER : CLASSICAL MECHANICS

COURSE NUMBER : P320

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS TWELVE PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P320 CLASSICAL MECHANICS

Question one

(a) For a certain dynamical system the kinetic energy T and potential energy V are given by $T=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{1} \dot{q}_{2}+\dot{q}_{2}^{2}\right)$ $V=\frac{3}{2} q_{2}^{2}$
where q_{1}, q_{2} are the generalized coordinates.
(i) Write down Lagrange's equations of motion and show that

$$
\left\{\begin{array}{l}
\ddot{q}_{1}+\frac{1}{2} \ddot{q}_{2}=0 \\
\frac{1}{2} \ddot{q}_{1}+\ddot{q}_{2}=-3 q_{2}
\end{array}\right.
$$

(ii) Eliminate \ddot{q}_{1} from the Lagrange's equations of motion in (a)(i) to obtain a differential equation for q_{2} and then show that the general solution of q_{2} can be written as $q_{2}=k_{1} \cos (2 t)+k_{2} \sin (2 t)$ where k_{1} and k_{2} are two arbitrary constants .
(4 marks)
(iii) Substitute the general solution of q_{2} in (a)(ii) back to any one equation in (a)(i) and integrate twice to show that the general solution of q_{1} can be written as $q_{1}=-\frac{k_{1}}{2} \cos (2 t)-\frac{k_{2}}{2} \sin (2 t)+k_{3} t+k_{4} \quad$ where $k_{3} \quad$ and $k_{4} \quad$ are another two arbitrary constants
(4 marks)
(iv) Write down their canonical momenta $p_{q_{1}} \& p_{q_{2}}$ and then deduce that

$$
\left\{\begin{array}{l}
\dot{q}_{1}=\frac{4}{3} p_{q_{1}}-\frac{2}{3} p_{q_{2}} \tag{5marks}\\
\dot{q}_{2}=-\frac{2}{3} p_{q_{1}}+\frac{4}{3} p_{q_{2}}
\end{array}\right.
$$

(b) (i) Use $H=T+V$ and the results in (a)(iv) to write down the Hamiltonian of the system and deduce that

$$
\begin{equation*}
H=\frac{2}{3}\left(p_{q_{1}}{ }^{2}+p_{q_{1}}{ }^{2}-p_{q_{1}} p_{q_{2}}\right)+\frac{3}{2} q_{2}^{2} \tag{4marks}
\end{equation*}
$$

(ii) From the Hamiltonian in (b)(i), write down the equations of motion of the system.
(4 marks)

Question two

(a) Consider the double pulley system as shown in the following diagram :

Assume the pulleys are massless and let $l_{1} \& l_{2}$ be the length of rope hanging freely from pulley 1 and pulley 2 respectively. Assume the pulley system subject only to gravitational force with zero gravitational potential set at $x=0$
(i) Write down the Lagrangian L for the given system and show that it can be simplified to the following expression :

$$
\begin{aligned}
L= & \frac{1}{2}\left(m_{1}+m_{2}+m_{3}\right) \dot{x}^{2}+\frac{1}{2}\left(m_{2}+m_{3}\right) \dot{y}^{2}+\left(m_{3}-m_{2}\right) \dot{x} \dot{y} \\
& +m_{1} g x+m_{2} g\left(l_{1}-x+y\right)+m_{3} g\left(l_{1}-x+l_{2}-y\right)
\end{aligned}
$$

(8 marks)
(ii) Write down Lagrange's equations of motion and show that

$$
\left\{\begin{array}{l}
\left(m_{1}+m_{2}+m_{3}\right) \ddot{x}+\left(m_{3}-m_{2}\right) \ddot{y}=\left(m_{1}-m_{2}-m_{3}\right) g \tag{4marks}\\
\left(m_{3}-m_{2}\right) \ddot{x}+\left(m_{3}+m_{2}\right) \ddot{y}=\left(m_{2}-m_{3}\right) g
\end{array}\right.
$$

Question two (continued)

(b) If H denotes the Hamiltonian function and L is the Lagrangian function, use the definition $H=\sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha}-L$ (where p_{α} and $q_{\alpha}(\alpha=1,2, \cdots, n)$ are the generalized momenta and coordinates respectively, i.e., $H=H\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}, t\right)$, $L=L\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}, t\right) \quad, \quad p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}}$ and $\left.\dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}\right)$ to show that
(i) $\quad \dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad \alpha=1,2, \cdots, n$
(ii) $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}} \quad \alpha=1,2, \cdots, n$
(iii) $\frac{d F}{d t}=[F, H]+\frac{\partial F}{\partial t} \quad$ where $F=F\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}, t\right)$ and

$$
[F, H] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial H}{\partial p_{\alpha}}-\frac{\partial F}{\partial p_{\alpha}} \frac{\partial H}{\partial q_{\alpha}}\right)
$$

(4 marks)
(5 marks)

Question three

Consider a particle of mass m acted on by an attractive central force of $\vec{F}=-\vec{e}_{r} \frac{k}{r^{n}}$, where k is a positive constant and $n>1$, and moving in a 2-D plane described by the plane polar coordinates as shown in the diagram below.

The kinetic energy of this particle in this plane polar coordinate is
$T=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \ldots \ldots$ (1).
(i) From $\quad V=-\int_{r_{0}}^{r} \vec{F} \cdot d \vec{l}$ where $d \vec{l}=d \vec{r}=\vec{e}_{r} d r+\vec{e}_{\theta} r d \theta \quad \& \quad r_{0} \rightarrow \infty \quad$, find the potential energy V of this particle in this plane polar coordinate under the given force $\vec{F}=-\vec{e}_{r} \frac{k}{r^{n}} \quad$ where k is a constant. Show that $V=-\left(\frac{k}{(n-1) r^{n-1}}\right) \ldots \ldots$ (2)
(3 marks)
(ii) Write down the Lagrange equations of motion for this system and show that

$$
\left\{\begin{array}{l}
m \ddot{r}=\left(m r \dot{\theta}^{2}-\frac{k}{r^{n}}\right) \tag{5marks}\\
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
\end{array}\right.
$$

(iii) Write its (r, θ) respective momentums, i.e., $p_{r} \& p_{\theta}$, and show that the angular momentum p_{θ} is a constant and then eq.(1) \& eq.(3) can be rewritten in terms of this constant p_{θ} as $T=\frac{m \dot{r}^{2}}{2}+\frac{p_{\theta}{ }^{2}}{2 m r^{2}} \cdots \cdots$ (1)' and $m \ddot{r}=\left(\frac{p_{\theta}{ }^{2}}{m r^{3}}-\frac{k}{r^{n}}\right)$ respectively.
(iv) Multiply eq.(1)' by $d r$ and show that it can be rewritten as $d(T+V)=0$ and thus this implies the total energy $(T+V)$ is also a constant.
(Hint : $\ddot{r} d r=\frac{d \dot{r}}{d t} d r=d \dot{r} \frac{d r}{d t}=\dot{r} d \dot{r}=d\left(\frac{\dot{r}^{2}}{2}\right)$)
(v) For circular orbits, i.e., r is a constant, find a relation between the kinetic and potential energies and show that $T=-\frac{n-1}{2} V$.
(8 marks)
(Hint : Use eq.(1)', eq.(3)', eq.(2) and $\dot{r}=0 \& \ddot{r}=0$)

Question four

(a) Two identical simple harmonic oscillators of mass m and spring constant k are joined by a spring of spring constant k_{12} and allowed to oscillate on a horizontal frictionless plane along x-direction as shown below :

where $x_{1} \& x_{2}$ are the displaced lengths from the rest positions of $m_{1} \& m_{2}$ respectively. The Lagrangian for the system can be written as:
$L=\frac{1}{2} m \dot{x}_{1}{ }^{2}+\frac{1}{2} m \dot{x}_{2}{ }^{2}-\frac{1}{2} k x_{1}{ }^{2}-\frac{1}{2} k_{12}\left(x_{1}-x_{2}\right)^{2}-\frac{1}{2} k x_{2}{ }^{2}$
(i) Write down the equations of motion and deduce that

$$
\left\{\begin{array}{l}
\ddot{x}_{1}=-\left(\frac{k+k_{12}}{m}\right) x_{1}+\left(\frac{k_{12}}{m}\right) x_{2} \tag{4marks}\\
\ddot{x}_{2}=\left(\frac{k_{12}}{m}\right) x_{1}-\left(\frac{k+k_{12}}{m}\right) x_{2}
\end{array}\right.
$$

(ii) Set $x_{1}=\hat{X}_{1} e^{i \omega t}$ and $x_{2}=\hat{X}_{2} e^{i \omega t}$ (where \hat{X}_{1} and \hat{X}_{2} are constants) and deduce from the equations in (a)(i) the matrix equation $-\omega^{2} X=A X \quad$ where

$$
X=\binom{\hat{X}_{1}}{\hat{X}_{2}} \text { and } A=\left(\begin{array}{cc}
-\left(\frac{k+k_{12}}{m}\right) & \left(\frac{k_{12}}{m}\right) \\
\left(\frac{k_{12}}{m}\right) & -\left(\frac{k+k_{12}}{m}\right)
\end{array}\right)
$$

(4 marks)
(iii) Show that the eigenfrequencies ω of this coupled system are

$$
\begin{equation*}
\omega_{1}=\sqrt{\frac{k}{m}} \quad \& \quad \omega_{2}=\sqrt{\frac{k+2 k_{12}}{m}} \tag{4marks}
\end{equation*}
$$

Question four (continued)

(b)

If a particle is projected vertically upward with an initial speed v_{0} to a height h above a point on the earth's surface at northern latitude λ, show that it strikes the ground at a point $\frac{4}{3} \omega \cos (\lambda) \sqrt{\frac{8 h^{3}}{g}}$ to the west of the initial throwing point. Neglect air resistance and only consider small vertical height.
(Hint :
$\vec{a}_{e f f} \approx \vec{e}_{z}(-g)-2 \vec{\omega} \times \vec{v}_{r}, \vec{v}_{r} \approx \vec{e}_{z}\left(v_{0}-g t\right), \vec{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\vec{e}_{z}(\omega \sin (\lambda))$ and $v_{0}=\sqrt{2 g h}, \quad($ total time for the given motion $)=\frac{2 v_{0}}{g}$

Question five

(a) The fixed (or inertia) coordinate system X^{\prime} shares the same origin with the body coordinate system X such that only rotational motion is considered. The rotational velocity $\vec{\omega}$ of the body system with respect to the fixed system are breaking down into three independent angular velocities, i.e., $\vec{\omega}=\overrightarrow{\dot{\varphi}}+\overrightarrow{\dot{\theta}}+\overrightarrow{\dot{\psi}}$ where (φ, θ, ψ) are Euler's angles. We use two intermediate coordinate systems $X^{\prime \prime} \& X^{\prime \prime \prime}$ to bridge between X^{\prime} \& X systems such that $X^{\prime \prime}=\lambda_{\varphi} X^{\prime} \quad, \quad X^{\prime \prime \prime}=\lambda_{\theta} X^{\prime \prime} \quad \& \quad X=\lambda_{\psi} X^{\prime \prime \prime}$ as shown in the following diagram, where
$\lambda_{\varphi}=\left(\begin{array}{ccc}\cos (\varphi) & \sin (\varphi) & 0 \\ -\sin (\varphi) & \cos (\varphi) & 0 \\ 0 & 0 & 1\end{array}\right), \lambda_{\theta}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) \\ 0 & -\sin (\theta) & \cos (\theta)\end{array}\right), \lambda_{\psi}=\left(\begin{array}{ccc}\cos (\psi) & \sin (\psi) & 0 \\ -\sin (\psi) & \cos (\psi) & 0 \\ 0 & 0 & 1\end{array}\right)$

(a)

(i) Since the direction of $\stackrel{\sim}{\dot{\varphi}}$ is along $x_{3}{ }^{\prime}$-axis (which is the same as $x_{3}{ }^{\prime \prime}$-axis) with the magnitude of $\dot{\varphi}$ thus $(\overrightarrow{\dot{\varphi}}) "=\left(\begin{array}{c}0 \\ 0 \\ \dot{\varphi}\end{array}\right)$ in $X^{"}$ system, show that $\overrightarrow{\dot{\varphi}}$ in X
system(i.e., the body system) is $(\overrightarrow{\dot{\varphi}})=\left(\begin{array}{c}\dot{\varphi} \sin (\theta) \sin (\psi) \\ \dot{\varphi} \sin (\theta) \cos (\psi) \\ \dot{\varphi} \cos (\theta)\end{array}\right)$ in X system. In other words, show that

$$
\left(\begin{array}{c}
\dot{\varphi} \sin (\theta) \sin (\psi) \\
\dot{\varphi} \sin (\theta) \cos (\psi) \\
\dot{\varphi} \cos (\theta)
\end{array}\right)=\lambda_{\psi} \quad \lambda_{\theta}\left(\begin{array}{c}
0 \\
0 \\
\dot{\varphi}
\end{array}\right)
$$

Question five (continued)

(ii) Since the direction of $\overrightarrow{\dot{\theta}}$ is along $x_{1}{ }^{\prime \prime}$-axis (which is the same as $x_{I}{ }^{\prime}{ }^{\prime \prime}$-axis) with the magnitude of $\dot{\theta}$ thus $(\overrightarrow{\dot{\theta}})^{\prime}=\left(\begin{array}{l}\dot{\theta} \\ 0 \\ 0\end{array}\right)$ in $X^{\prime \prime \prime}$ system, show that $\overrightarrow{\dot{\theta}}$ in X system(i.e., the body system) is $(\overrightarrow{\dot{\theta}})=\left(\begin{array}{c}\dot{\theta} \cos (\psi) \\ -\dot{\theta} \sin (\psi) \\ 0\end{array}\right)$ in X system. In other words, show that $\left(\begin{array}{c}\dot{\theta} \cos (\psi) \\ -\dot{\theta} \sin (\psi) \\ 0\end{array}\right)=\lambda_{\psi}\left(\begin{array}{l}\dot{\theta} \\ 0 \\ 0\end{array}\right)$.
(Note : Since the direction of $\vec{\psi}$ is along $x_{3}{ }^{\prime \prime \prime}$-axis (which is the same as x_{3} -axis) with the magnitude of $\dot{\psi}$ thus $(\overrightarrow{\dot{\psi}})=\left(\begin{array}{c}0 \\ 0 \\ \dot{\psi}\end{array}\right)$ in X system. Then the rotational velocity $\vec{\omega}=\overrightarrow{\dot{\varphi}}+\overrightarrow{\dot{\theta}}+\overrightarrow{\dot{\psi}} \quad$ in X system (i.e., body system) can be written in terms of Euler's angles as $(\vec{\omega}) \equiv\left(\begin{array}{c}\omega_{1} \\ \omega_{2} \\ \omega_{3}\end{array}\right)=\left(\begin{array}{c}\dot{\varphi} \sin (\theta) \sin (\psi)+\dot{\theta} \cos (\psi) \\ \dot{\varphi} \sin (\theta) \cos (\psi)-\dot{\theta} \sin (\psi) \\ \dot{\varphi} \cos (\theta)+\dot{\psi}\end{array}\right)$)
(b) (i) By proper choice of the orientation of the body coordinate system, the inertia tensor I (i.e., rotational mass) of a rigid body can be in the form of a diagonal matrix ,
i.e., $I=\left(\begin{array}{ccc}I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3}\end{array}\right)$, thus its rotational kinetic energy is
$T_{\text {rot }}=\frac{1}{2} I_{1} \omega_{1}{ }^{2}+\frac{1}{2} I_{2} \omega_{2}{ }^{2}+\frac{1}{2} I_{3} \omega_{3}{ }^{2}$.
Consider a pure rotational motion of the rigid body under no external force, then its
Lagrangian is $L=T_{\text {rot }}=\frac{1}{2} I_{1} \omega_{1}{ }^{2}+\frac{1}{2} I_{2} \omega_{2}{ }^{2}+\frac{1}{2} I_{3} \omega_{3}{ }^{2}$ where
$\omega_{1}, \omega_{2} \& \omega_{3}$ are functions of $(\varphi, \theta, \psi, \dot{\varphi}, \dot{\theta}, \dot{\psi})$ as those given in (a)(ii).
Write down the Lagrange equation of motion for ψ, i.e., $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\psi}}\right)=\frac{\partial L}{\partial \psi}$, and show that it can be simplified to $\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}-I_{3} \dot{\omega}_{3}=0$.
(13 marks)

Question five (continued again)

(ii) From $\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}-I_{3} \dot{\omega}_{3}=0$ derived in (b)(i), the other two independent equations for the above rigid body's motion can be simply written down directly as $\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}-I_{1} \dot{\omega}_{1}=0 \&\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}-I_{2} \dot{\omega}_{2}=0 \quad$ without going through similar derivations as done in (b)(i). Explain briefly why so ?
(2 marks)

Useful informations

$V=-\int \vec{F} \cdot d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r}$ where $k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}}\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $m_{2} \gg m_{1}$
For elliptical orbit, i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{c}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-minor } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b) \\ r_{\min }=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)\end{array}\right.$
for plane polar (r, θ) system with unit vectors $\left(\bar{e}_{r}, \bar{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\vec{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \vec{a}=\vec{e}_{r}\left(\dot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$

Useful informations (continued)

$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$
$\vec{F}_{e f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\vec{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
\vec{r}^{\prime} refers to fixed(inertial system)
\vec{r} refers to rotatinal(non-inertial system) rotates with $\vec{\omega}$ to \vec{r} ' system
$\vec{R} \quad$ from the origin of \vec{r} ' to the origin of \vec{r}
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

