UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2015/2016
TITLE OF THE PAPER: QUANTUM MECHANICS
COURSE NUMBER: P342
TIME ALLOWED: THREE HOURS
INSTRUCTIONS:

- ANSWER ANY FOUR OUT THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHTHAND MARGIN.
- USE THE INFORMATION GIVEN IN PAGE 2 WHEN NECESSARY.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Useful Formulas

Time-dependent Schrodinger equation: $\quad i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t)$
Time-independent Schrodinger equation: $\quad \hat{H} \psi(x)=E \psi(x)$
Hamiltonian operator : $\quad \hat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial}{\partial x}\right)^{2}+V(x)$
Momentum operator $\quad \hat{p} \psi(x)=-i \hbar \frac{\partial}{\partial x} \psi(x)$
Probability current $\quad J(x, t)=\frac{i \hbar}{2 m}\left(\frac{\partial \psi^{*}}{\partial x} \psi-\psi^{*} \frac{\partial \psi}{\partial x}\right)$
Fourier transform $\quad \psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i k x} d k$
Inverse Fourier transform $\quad \phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(x) e^{-i k x} d x$
$\int_{-\infty}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{(2 a)^{n}} \sqrt{\frac{\pi}{a}}, \quad \mathrm{n}=0,1,2,3, \ldots$.
$\int_{-\infty}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=0, \quad \mathrm{n}=0,1,2,3, \ldots$.
Heisenberg uncertainty $\quad \Delta x \Delta p \geq \hbar / 2$
Uncertainty of a quantity $\quad(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
Infinite potential well:

$$
\begin{gathered}
\qquad V(x)=\left\{\begin{array}{lc}
0 & \text { for } 0 \leq x \leq a \\
\infty & \text { elsewhere }
\end{array}\right. \\
E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}} \text { and } u_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
\end{gathered}
$$

Trigonometry:

$$
\begin{aligned}
& \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}
\end{aligned}
$$

Question 1

Consider an electron in a one-dimensional infinite potential well of the width a :

$$
V(x)=\left\{\begin{array}{cc}
0, & 0<x<a \\
\infty, & \text { elsewhere }
\end{array}\right.
$$

Suppose the initial normalized wave function of the electron is given as

$$
\psi(x, t=0)=A \cos ^{4}\left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi x}{a}\right)
$$

(a) What is the wave function at later time $t, \psi(x, t)$?
(b) Calculate the normalization constant A.
(c) What is the probability that an energy measurement yields E_{3} where

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} ?
$$

(d) If this measurement is repeated on many identical systems, what is the average value of the energy that will be found?
(e) Using the uncertainty principle, estimate the order of the electron's speed in this well as a function of the speed of light (the rest mass of the electron is $\left.m_{e} c^{2} \simeq 0.511 \mathrm{MeV}, \hbar c \simeq 197 \mathrm{MeV} \cdot \mathrm{fm}, a=8 \times 10^{4} \mathrm{fm}\right)$.

Question 2

At time $t=0$ a particle of mass m trapped in an infinite square well of width L is in a superposition of ground state and the fourth excited state,

$$
\psi_{s}(x, 0)=N\left[3 u_{1}(x)-2 i u_{5}(x)\right]
$$

where the $u_{n}(x)$ are correctly-normalized energy eigenstates with energies E_{n}.
(a) Which of the following values of N give a properly normalized wavefunction?
i) $\frac{1}{\sqrt{5}}$
ii) $\frac{i}{5}$
iii) $\frac{-i}{\sqrt{13}}$
iv) $\frac{1}{13}$
v) None of these
[5 marks]
(b) Given the wavefunction ψ_{s}, what is the probability that the energy is E_{5} at $t=0$? Explain.
i) 0
ii) $3 / 5$
iii) $4 / 13$
iv) $9 / 25$
v) $6 / 13$
(c) Let $\phi_{n l m}(\mathbf{r})$ denote the ortho-normalized energy eigenfunctions of the Coulomb potential with principal quantum number n and angular momentum quantum numbers l and m. Consider the state $\psi(\mathbf{r})=C\left[\phi_{100}(\mathbf{r})+4 i \phi_{210}(\mathbf{r})-2 \sqrt{2} \phi_{21-1}(\mathbf{r})\right]$. The expectation value of the z-component of the particle angular momentum \hat{L}_{z} is
i) 0
ii) $80 \hbar^{2} / 25$
iii) $1 / 5$
iv) $-8 \hbar / 25$
v) None of these [5 marks]
(d) Let ϕ_{n} be the properly-normalized $n^{\text {th }}$ energy eigenfunction of the harmonic oscillator, and let $\psi=\hat{a} \hat{a}^{\dagger} \phi_{n}$. Which of the following is equal to ψ ?
i) ϕ_{n}
ii) $n \phi_{n-1}$
iii) $(n+1) \phi_{n}$
iv) $n \phi_{n+1}$
v) None of these [5 marks]
(e) A particle of mass m and charge q is accelerated across a potential difference V to a non-relativistic velocity. What is the de Broglie wavelength λ of this particle?
i) $\frac{m}{2 h q V}$
ii) $\frac{q V}{\sqrt{2 m q V}}$
iii) $\frac{h}{\sqrt{2 m q V}}$
iv) $\frac{m}{\hbar \sqrt{2 q V}}$
v) Something Else [5 marks]

NB: For full marks please support your answer.

Question 3

The evolution of a quantum particle is in a state $|\psi, t\rangle$ which is a solution to the time dependent Schrodinger equation

$$
i \hbar \frac{d}{d t}|\psi, t\rangle=\hat{H}|\psi, t\rangle
$$

then the expectation value of any operator \hat{O} satisfies:

$$
\frac{d}{d t}\langle\psi, t| \hat{O}|\psi, t\rangle=\frac{i}{\hbar}\langle\psi, t|[\hat{H}, \hat{O}]|\psi, t\rangle
$$

(a) A classical particle moving in a potential $V(x)$ obeys the following relations:

$$
\frac{d x}{d t}=\frac{p}{m}, \quad \frac{d p}{d t}=-\frac{d V(x)}{d x}
$$

Show that for a quantum particle with Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x})
$$

satisfies the analogous relations:

$$
\begin{gathered}
\frac{d}{d t}\langle\psi, t| \hat{x}|\psi, t\rangle=\frac{1}{m}\langle\psi, t| \hat{p}|\psi, t\rangle \\
\frac{d}{d t}\langle\psi, t| \hat{p}|\psi, t\rangle=-\langle\psi, t| \frac{d V(\hat{x})}{d \hat{x}}|\psi, t\rangle
\end{gathered}
$$

[10 marks]
(b) Consider a particle of mass m which moves under the influence of gravity; the particle's Hamiltonian is $\hat{H}=\hat{P}_{y}^{2} / 2 m-m g \hat{y}$, where g is the acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Calculate

$$
\frac{d\langle\hat{y}\rangle}{d t}, \frac{d\left\langle\hat{P}_{y}\right\rangle}{d t}, \text { and } \frac{d\langle\hat{H}\rangle}{d t} .
$$

[9 marks]
(ii) Solve the equation $d\langle\hat{y}\rangle / d t$ and the obtain $\langle\hat{y}\rangle(t)$, such that $\langle\hat{y}\rangle(0)=h$ and $\left\langle\hat{P}_{y}\right\rangle(0)=0$. Compare the result with the classical relation $y(t)=-\frac{1}{2} g t^{2}+h$.

Question 4

(a) An electron in the Coulomb field of a proton is in a state described by the wavefunction

$$
\psi(\vec{r})=\frac{1}{\sqrt{10}}\left(2 \phi_{100}+\phi_{210}+\sqrt{2} \phi_{211}+\sqrt{3} \phi_{21-1}\right)
$$

where the subscripts are the values of the quantum number n, l, and m, respectively. Note that $L_{z} \phi_{n l m}=m \hbar \phi_{n l m}$.
(i) If the z-component of the electron's angular momentum L_{z} were measured, what values would one obtain, and with what probabilities?
[6 marks]
(ii) Determine the expectation value of the z-component of the electron's angular momentum L_{z}.
(iii) If a measurement of the electron's energy were carried out what values would be found, and with what probabilities? Note that $\hat{H} \psi_{n l m}=E_{n} \hbar \psi_{n l m}$, where $E_{n}=-13.6 \mathrm{eV} / n^{2}$.
(iv) Determine the mean value of the electron's energy $\langle E\rangle$.
(b) Consider a hydrogen atom which is in its ground state; the ground state wave function is given by

$$
\psi(r, \theta, \phi)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

where a_{0} is the Bohr radius. Find the most probable distance between the electron and proton when the hydrogen atom is its ground state.

Question 5

A particle of mass m in a one dimensional simple harmonic oscillator potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ has the initial wavefunction

$$
|\psi, t=0\rangle=N(|1\rangle-\sqrt{5} i|2\rangle+\sqrt{3} i|4\rangle)
$$

where $|n\rangle, n=0,1, \ldots$, are the harmonic oscillator energy eigenstate, satisfying $\hat{a}^{\dagger} \hat{a}|n\rangle=n|n\rangle, \hat{a}|n\rangle=\sqrt{n}|n-1\rangle$, and $\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ where \hat{a}^{\dagger} and \hat{a} are the raising and lowering operators respectively. In term of \hat{a}^{\dagger} and \hat{a}, the Hamiltonian operator of this system $\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)$.
(a) Find N such that $|\psi, t=0\rangle$ is properly normalized.
(b) What is the wavefunction at a later time, $|\psi, t\rangle$?
(c) Compute the expectation value of the energy $\langle\psi, t| \hat{H}|\psi, t\rangle$?
[5 marks]
(d) If a measurement of the electron's energy were carried out what values could be found and with what probabilities?
[5 marks]
(e) What is the most probable result for a measurement of the particle's energy?
[2 marks]
(f) What is the expectation value for the particle's potential energy $\langle\psi, t| \frac{1}{2} m \omega^{2} \hat{x}^{2}|\psi, t\rangle$. Hint: $\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right)$

