UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2015/2016
TITLE OF THE PAPER: COMPUTATIONAL METHODS-II
COURSE NUMBER: P482
TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:

THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.

Answer all the questions from section \mathbf{A} and all the questions from section \mathbf{B}.
Marks for different sections of each question are shown in the right hand margin.

THE PAPER HAS 6 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Section A

Question 1

(a) Using the information about precedence/associativity of operators in Fortran evaluate each of the following F95 expressions
(i) $2+3 * 4+2$
(ii) $5 * * 2 * 4$
(iii) $4 * *(1 / 2$.)
(iv) $2.3 *(3 / 2)-5$
(v) $10 /(1.0 * 3)-10 / 3$
[5 marks]
(b) Indicate which of the following declaration statements are valid. For invalid declaration statements describe why they are invalid:
i) $y+2=x$
ii) Dist $:=y 2-y 1$
iii) $N U M=N U M+1$
(c) The following code fragment shows a potential infinite loop:
$i=0$
do
$i=i+1$
write ($\left.{ }^{*},{ }^{*}\right), i^{* *}{ }^{*}$
end do
Present two alternatives for of the above do loop that will cause it to be executed precisely 100 times.

Question 2

a) Catalan numbers: The Catalan numbers C_{n} are a sequence of integers 1,1 , $2,5,14,42,132$. . that play an important role in quantum mechanics and the theory of disordered systems. (They were central to Eugene Wigners proof of the so-called semicircle law.) They are defined by

$$
C_{0}=1, C_{n+1}=\frac{4 n+2}{n+2} C_{n}
$$

Write a program that prints in increasing order all Catalan numbers less than or equal to one billion.
b) Compute the period of the sequence $\left(x_{n}\right)$ defined below. Give two reasons why it would make a bad random number generator.

$$
\begin{aligned}
x_{n} & =\left(x_{n-1}+x_{n-2}\right) \bmod 12 \\
x_{0} & =3 \\
x_{1} & =7
\end{aligned}
$$

Question 3

a) Write a program to calculate an approximate value for the integral

$$
\int_{0}^{2}\left(x^{4}-2 x+1\right) d x
$$

using the Trapezoidal rule with 10 slices.
b) A quantum particle living in one dimension is characterized by its wavefunction $\psi(x)$. If the particle interacts with nothing else and is subject to no confining potential, then it is free and its energy is given

$$
E=-\frac{1}{\psi(x)} \frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}
$$

Devise a finite difference approximation to evaluate E given the wavefunction $\psi(i)=\psi\left(x_{i}\right)$ at discrete points $x_{i}=i * h,($ for integer $i)$.

Question 4

a) Consider two $N \times N$ matrices A and B. Which loop is more efficient for reading the sum of the two matrices in Fortran 90/95. Explain.
i) $\mathrm{DO} \mathrm{i}=1, \mathrm{~N}$

DO $\mathrm{j}=1, \mathrm{~N}$
$S(i, j)=A(i, j)+B(i, j)$
END DO
END DO
ii) $\mathrm{DO} \mathrm{j}=1, \mathrm{~N}$

DO i $=1, \mathrm{~N}$
$S(i, j)=A(i, j)+B(i, j)$
END DO
END DO
b) In nuclear physics the semi-empirical mass formula gives an approximate value for the binding energy B of a nucleus with atomic number Z and a mass number A :

$$
B=a_{1} A-a_{2} A^{2 / 3}-a_{3} \frac{Z^{2}}{A^{1 / 3}}-a_{4} \frac{(A-2 Z)^{2}}{A}+\frac{a_{5}}{A^{1 / 2}}
$$

where, in units of MeV , the constants are $a_{1}=5.67, a_{2}=17.23, a_{3}=0.75$, $a_{4}=93.2$, and

$$
a_{5}=\left\{\begin{array}{cc}
12.0 & \text { if } \mathrm{Z} \text { and } \mathrm{A}-\mathrm{Z} \text { are both even } \\
-12.0 & \text { if } \mathrm{Z} \text { and } \mathrm{A}-\mathrm{Z} \text { are both odd } \\
0 & \text { otherwise }
\end{array}\right.
$$

Write a $\mathrm{F} 95 / \mathrm{C}++$ program that asks the user to enter A and Z and then calculates and returns the binding energy per nucleon B / A.

Section B

Note: The answers to this question must include the computer code and output, in addition to any writing that might be needed.

Question 5

The dynamics of a cyclist:- The equation of motion of a cyclist exerting a force on his bicycle corresponding to a constant power P and moving against the force of air resistance is given by

$$
\frac{d v(t)}{d t}=\frac{P}{m v(t)}-\frac{C \rho A v(t)^{2}}{m},
$$

where $m=$ mass of the rider, $v(t)$ is the velocity which is always positive, ρ is the air density $C=$ coefficient of the air drag force, and A is the cross-sectional area of the cyclist. The Euler algorithm give the approximate solution:

$$
v(i+1)=v(i)+\Delta t\left(\frac{P}{m v(i)}-\frac{C \rho A v^{2}(t)}{m}\right)
$$

for $\mathrm{i}=0,1, \ldots, \mathrm{~N}$ with the corresponding time $t \equiv t_{i}=i \cdot \Delta t$
a) Write a $\mathrm{F} 95 / \mathrm{C}++$ program that calculate the speed v as function of time in the case of zero air resistance and then in the case of non-vanishing air resistance. What do you observe. Assume that $m=70 \mathrm{~kg}, \mathrm{v}(0)=4.0 \mathrm{~m} / \mathrm{s}, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$, $\Delta t=0.1 \mathrm{~s}, \mathrm{P}=200$ Watts, $A=0.33 \mathrm{~m}^{2}$ and the cyclist starts at time $\mathrm{t}=0$ and stops $t=200 \mathrm{~s}$. What do you observe if you change the drag coefficient and/or the power.
[30 marks]
b) An even more realistic model considers that the cyclist may face either a head or tail wind. The improved model is given as

$$
\frac{d v(t)}{d t}=\frac{P}{m v(t)}-\frac{C \rho A}{m}\left(v(t)-v_{w}\right)\left|v(t)-v_{w}\right|,
$$

where v_{w} is the wind speed. Determine the $v(t)$ for $v_{w}=3.5 \mathrm{~m} / \mathrm{s}$ (tail wind) and $v_{w}=-3.5 \mathrm{~m} / \mathrm{s}$ (head wind). Plot these results on the same figure.

Question 6

a) Write a program to calculate an approximate value for the integral:

$$
\int_{0}^{1} x^{1 / 2} e^{x} d x
$$

using the Simpson's rule. Recall that according to the Simpson's rule the integral of $f(x)$ over the interval $[a, b]$ is given as:

$$
\int_{a}^{b} f(x) d x \sim \frac{h}{3}\left(f(a)+f(b)+4 \sum_{k=1}^{N / 2} f(a+(2 k-1) h)+2 \sum_{k=1}^{N / 2-1} f(a+2 k h)\right)
$$

where $h=(b-a) / N$, where N is positive even number. Run the program for N $=10$ and compare your result to the exact results of $1.255630082 \ldots .$.
[10 marks]
b) Modify the program to increase N, the number of sampling points. Comment on the improvement in the result, compared with the exact solution.
[10 marks]
For a full credit hand in your program, your results, and a brief discussion of the results.

