UNIVERISTY OF SWAZILAND

;

65

P311 - ELECTRONICS I

MAIN EXAMINATION 2016 TIME ALLOWED: 3 HOURS

INSTRUCTIONS: Answer any four (4) questions. Each question carries 25 marks.

1

- (a) (i) Draw a typical I-V characteristic of a Silicon junction diode, showing the order of magnitude of the currents and voltages.(4 marks)
 - (ii) Are there any differences between Silicon and Germanium diodes and if yes, what are they? (2 marks)

(b) Figure 1 shows a simple diode circuit.

- (i) Using Kirchoff's law, analyse the circuit and use your result to construct a load line to an arbitrary characteristic. (3 marks)
- (ii) What does the load line depend on and what is the importance of the intersection line with the characteristics? (2 marks)
- (iii) Is there only one intersection point? (2 Marks)

- (c) The diode used in circuit of figure 2 has the characteristics shown in figure 3.
 - (i) Use the D.C. load-line to determine the current flowing in the circuit, when the applied D.C. voltage is 5 V and the load resistance is 100 Ω . (6 marks)
 - (ii) Calculate the value of V_L . (2 Marks)
 - (iii) What value of R_L would allow a 90 mA current to flow in the circuit? (4 marks)

- (a) What property of a Zener diode makes it suitable for use as a voltage regulator? (2 marks)
- (b) A D.C. power supply is a device which consist of a bridge full-wave rectifier, a smoothing capacitor and a Zener diode circuit. With aid of labelled diagrams for circuit and output waveforms, describe in detail the operation of the power supply. Indicate clearly how the 240 V r.m.s. input voltage from the main supply is converted into a D.C. voltage. (10 marks)
- (c) Calculate the average output voltage of the circuit shown in figure 4 if the mains voltage is 240 V r.m.s. and the transformer turns ratio, n, is 4:1. (4 marks)

Figure 4:

- (d) A Zener diode regulator circuit is to provide 24 V supply to a variable load. The input voltage is 30 V and a 24 V, 400 mW Zener diode is to be used. Calculate
 - (i) The series resistance required. (4 marks)
 - (ii) The Zener diode current when the load resistance is 2000 $\Omega.$ (5 marks)

The regulator circuit shown in figure 5 uses an ideal Zener diode, with $V_z = 9.1$ V, $I_{zk} = 1.0$ mA and the maximum power, $P_{z,max} = 500$ mW.

- (a) What are the maximum and minimum input voltages for which the output will be regulated? (9 marks)
- (b) What is the power dissipation in R_L , when the output is regulated? (2 marks)
- (c) What is the power dissipated in R_s at the maximum and minimum input voltages? (8 marks)
- (d) What is the apparent resistance of the Zener diode at the minimum and maximum voltages? (6 marks)

- (a) For a BJT, the relationship between the collector current, I_C and the emitter current, I_E is given by $I_C = \alpha I_E$ and that between the collector current, I_C and the base current, I_B is given by $I_C = \beta I_B$, where α and β are constants.
 - (i) What is the range of typical values of α ? (2 marks)
 - (i) Derive an expression for the relationship between α and β . (5 Marks)
- (b) Assuming that $V_{BE} \approx 0.7$ V, calculate the values of I_C , V_{CE} and V_{CB} for the circuit shown in figure 6. (6 marks)

Figure 6:

(c) The element values of the circuit shown in figure 7 are: $R_1 = 150 \text{ k}\Omega$, $R_2 = 37.5 \text{ k}\Omega$, $R_E = 3 \text{ k}\Omega$, $R_C = 7 \text{ k}\Omega$, $V_{CC} = 9 \text{ V}$. The transistor has $\beta = 100$ and a negligible reverse saturation current. Assuming that $V_{BE} = 0.7 \text{ V}$, Calculate I_C and V_{CE} . (12 marks)

Figure 7:

1

(a) Figure 8 shows the transfer characteristic curve of a JFET. Write the equation for drain current. (3 marks)

- (b) A JFET has the following parameters: $I_{DSS} = 32$ mA; $V_{GS(off)} = -8$ V; $V_{GS} = -4.5$ V. Find the value of drain current. (4 marks)
- (c) A JFET has a drain current of 5 mA. If $I_{DSS} = 10$ mA and $V_{GS(off)} = -6$ V, find the value of
 - (i) V_{GS} (3 marks)
 - (ii) V_P (2 marks)

(c) For the JFET in figure 9, $V_{GS(off)} = -4$ V and $I_{DSS} = 12$ mA. Determine the minimum value of V_{DD} required to put the device in the constant-current region of operation.(8 marks)

Figure 9:

(d) Determine the value of drain current for the circuit shown in figure 10.(5 marks)

Figure 10:

74