```
UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS
MAIN EXAMINATION 2016/2017
```


TITLE OF PAPER : CLASSICAL MECHANICS

```
COURSE NUMBER : P320
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
```

THIS PAPER HAS TEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) If H denotes the Hamiltonian function and L is the Lagrangian function, use the definition $H=\sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha}-L \quad$ [where p_{α} and $q_{\alpha}(\alpha=1,2, \cdots, n)$ are the generalized momenta and coordinates respectively, ie., $H=H\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}, t\right)$, $L=L\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}, t\right) \quad, \quad p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}}$ and $\left.\dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}\right]$ to show that
(i) $\quad \dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad \alpha=1,2, \cdots, n$
(4 marks)
(ii) $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}} \quad \alpha=1,2, \cdots, n$
(iii) $\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}$
(4 marks)
(7 marks)
(b) For a certain dynamical system the kinetic energy, T, and potential energy, V, are given by $T=\dot{q}_{1}^{2}+2 \dot{q}_{1} \dot{q}_{2}+3 \dot{q}_{2}^{2}$ $V=4 q_{1}^{2}$
where q_{1}, q_{2} are the generalized coordinates.
(i) Find the momentum $p_{1} \& p_{2}$ of the system.
(ii) Use $H=\sum_{\alpha=1}^{2} p_{\alpha} \dot{q}_{\alpha}-L$ to find the Hamiltonian function of the system and show that $H=\frac{1}{8}\left(3 p_{1}{ }^{2}-2 p_{1} p_{2}+p_{2}{ }^{2}\right)+4 q_{1}^{2}$

Question two

The definition of the Poisson brackets are given as $[u, v]_{q, p} \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$, or simply written as $[u, v]$, where q_{α} and p_{α} are the $\alpha^{i h}$ generalized coordinate and momentum respectively .
(a) For any function $F\left(q_{1}, q_{2}, \cdots, q_{n}, p_{1}, p_{2}, \cdots, p_{n}, t\right)$, prove that $\frac{d F}{d t}=[F, H]+\frac{\partial F}{\partial t}$
where H is the Hamiltonian of the system, i.e., $H\left(q_{1}, q_{2}, \cdots, q_{n}, p_{1}, p_{2}, \cdots, p_{n}, t\right)$
(5 marks)
(b) The three components of the angular momentum $\vec{l}(\equiv \vec{r} \times \vec{p})$ of a particle of mass m are given by $l_{1}=q_{2} p_{3}-q_{3} p_{2}, l_{2}=q_{3} p_{1}-q_{1} p_{3}$ and $l_{3}=q_{1} p_{2}-q_{2} p_{1}$ where $\quad p_{i}=m \dot{q}_{i} \quad i=1,2,3$. Show that
(i) $\left[l_{1}, l_{2}\right]=l_{3}$
(5 marks)
(ii) $\left[q_{2}, l_{3}\right]=q_{1}$
(5 marks)
(c) For an equation of the type $\frac{d u}{d t}=[u, H]$ the specific solution of $u(t)$ is given by the following Taylor series expansion for the time t as

$$
\begin{equation*}
\left.\left.u(t)=u_{0}+[u, H]_{0} t+[\llbracket u, H], H\right]_{0} \frac{t^{2}}{2!}+[[u, H], H], H\right]_{0} \frac{t^{3}}{3!}+\cdots \cdots \cdots \tag{1}
\end{equation*}
$$

where subscript 0 denotes the initial conditions at $t=0$.
For a simple harmonic oscillator system described by $H=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}$, if the initial conditions are given as x_{0} and p_{0}, use eq.(1) to deduce that

$$
\begin{equation*}
x(t)=x_{0}+\frac{p_{0}}{m} t-\frac{k x_{0}}{2 m} t^{2}-\frac{k p_{0}}{6 m^{2}} t^{3}+\cdots \cdots \tag{10marks}
\end{equation*}
$$

Question three

(a) Given the Lagrangian for the two-body central force system as:
$L=T-V=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{k}{r}$
where μ is the reduced mass of the system, k is a positive constant and (r, θ) are polar coordinates of the motion plane with its origin at the center of mass of the two-body system.
(i) Write down the Lagrange's equation for θ and show that the angular momentum l is conserved, ie., deduce that
$\dot{\theta}=\frac{l}{\mu r^{2}} \quad \cdots \cdots$ (1) where l is a constant.
(3 marks)
(ii) Write down the Lagrange's equation for r, with eq.(1) inserted, deduce that $\mu \ddot{r}-\frac{l^{2}}{\mu r^{3}}+\frac{k}{r^{2}}=0$
(3 marks)
(iii) Multiply eq.(2) by $d r$ and use $\ddot{r} d r=\frac{d \dot{r}}{d t} d r=d \dot{r} \frac{d r}{d t}=\dot{r} d \dot{r}=d\left(\frac{\dot{r}^{2}}{2}\right)$ to show that the total energy $E(\equiv T+V)$ is conserved, i.e., $\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{k}{r}=$ const.$\equiv E$
(6 marks)
(b) If an earth satellite of 500 kg mass is having a pure tangential speed $v_{\theta}=8,000 \mathrm{~m} / \mathrm{s}$ at its near-earth-point 600 km above the earth surface,
(i) calculate the values of l and E of this satellite, (3 marks)
(ii) calculate the values of the eccentricity, ε, and show that the orbit is an elliptical orbit. Also calculate its period.
(6 marks)
(iii) determine the value of the v_{θ} at the same given near-earth-point such that the satellite orbit is a circular orbit,
(2 marks)
(Hint : $E=\frac{1}{2} \mu v_{\theta}^{2}-\frac{k}{r} \xrightarrow{\text { circular orbit }}-\frac{k}{2 r}$)
(iv) determine the value of the v_{θ} at the same given near-earth-point such that the satellite orbit is a parabolic orbit .
(a) Two set of Cartesian coordinate axes are having the same origins and z-axis. The nonprime system (referred to as "rotating" system) is rotating with an angular velocity $\vec{\omega}=\vec{e}_{z^{\prime}} \dot{\theta}$ about the prime system (referred as "fixed" system) as shown below:

For any vector field \vec{F} decomposed into the above two-set of cartesian components, i.e., $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{x^{\prime}} F_{x^{\prime}}+\vec{e}_{y^{\prime}} F_{y^{\prime}}+\vec{e}_{z^{\prime}} F_{z^{\prime}}$, show that $\left(\frac{d \vec{F}}{d t}\right)_{\text {fixed }}=\left(\frac{d \vec{F}}{d t}\right)_{\text {rotuting }}+\vec{a} \times \vec{F} \quad$ where
$\left(\frac{d \vec{F}}{d t}\right)_{\text {fured }}=\vec{e}_{x^{\prime}} \frac{d F_{x^{\prime}}}{d t}+\vec{e}_{y^{\prime}} \frac{d F_{y^{\prime}}}{d t}+\vec{e}_{z^{\prime}} \frac{d F_{z^{\prime}}}{d t}$ and
$\left(\frac{d \vec{F}}{d t}\right)_{\text {rotating }}=\vec{e}_{x} \frac{d F_{x}}{d t}+\vec{e}_{y} \frac{d F_{y}}{d t}+\vec{e}_{z} \frac{d F_{z}}{d t}$
(Hint : $\vec{e}_{x}=\vec{e}_{x^{\prime}} \cos (\theta)+\vec{e}_{y^{\prime}} \sin (\theta), \vec{e}_{y}=-\vec{e}_{x^{\prime}} \sin (\theta)+\vec{e}_{y^{\prime}} \cos (\theta)$ and $\vec{e}_{x}=\vec{e}_{z^{\prime}}$)
(b)

If a person, near the earth surface at a northern latitude λ, fired a bullet of speed, v_{0}, at a target situated at his north direction ($-\vec{e}_{x}$ direction) of distance L away from him. Assuming he has a perfect rifle and the time T for the bullet hitting the target is short and $T \approx \frac{L}{v_{0}}$ (i.e., neglecting the gravitational bending and assuming the bullet is moving along - x direction with constant speed v_{0}).
(i) Show that the bullet will miss the target by a deviation distance d resulting from the Coriolis force $\left(-2 m \vec{\omega} \times \vec{v}_{r}\right)$. Show that

$$
d=\frac{\omega L^{2}}{v_{0}} \sin (\lambda)
$$

(11 marks)
(Hint: $\left.\vec{a}_{e f f} \approx-2 \vec{\omega} \times \vec{v}_{r}, \vec{v}_{r} \approx \vec{e}_{x}\left(-v_{0}\right), \vec{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\vec{e}_{z}(\omega \sin (\lambda))\right)$
(ii) Given the values of $\lambda=60^{\circ}, L=2000 \mathrm{~m}, \nu_{0}=800 \mathrm{~m} / \mathrm{s}$ and $\omega=2 \pi \mathrm{rad} / \mathrm{day}$ (i.e., $\omega=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}$), determine the value of the deviation distance d
(2 marks)

Question five

Six equal mass point $m\left(=m_{1}=m_{2}=\cdots=m_{6}\right)$ attached by massless rigid rods to form a rigid body of diamond shape with the center of mass of the "diamond" chosen as the origin of the body coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ as shown in the diagram below.

where each mass point's coordinates in terms of length $a \& b$ is indicated in the diagram.
(a) Evaluate all elements of the inertia tensor, I, of the given rigid body with respect to the chosen body coordinate system and show that

$$
I=\left(\begin{array}{ccc}
2 m\left(a^{2}+b^{2}\right) & 0 & 0 \\
0 & 2 m\left(a^{2}+b^{2}\right) & 0 \\
0 & 0 & 4 m a^{2}
\end{array}\right)
$$

(6 marks)
(b) If the given rigid body is only rotating with an angular velocity $\vec{\omega}$ without translational motion with respect to a fixed inertia coordinate system $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ sharing the same origin as that of the body coordinate system, write down the total kinetic energy
$T=T_{\text {roational }}=\frac{1}{2} \vec{\omega} \bullet I \bullet \vec{\omega}$ in terms of $m, a, b, \omega_{1}, \omega_{2} \& \omega_{3} \quad$ where

$$
\begin{equation*}
\vec{\omega}=\vec{e}_{1} \omega_{1}+\vec{e}_{2} \omega_{2}+\vec{e}_{3} \omega_{3} \tag{2marks}
\end{equation*}
$$

(c) The following are Euler's equations for force-free pure-rotational motion, i.e., $L=T_{\text {rotational }}$, for already diagonalized I as the case in (a).
$\left\{\begin{array}{llll}\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}-I_{1} \dot{\omega}_{1}=0 & \cdots \cdots & \text { (1) } \\ \left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}-I_{2} \dot{\omega}_{2}=0 & \cdots \cdots & \text { (2) } \\ \left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}-I_{3} \dot{\omega}_{3}=0 & \cdots \cdots & \text { (3) }\end{array}\right.$
(i) For our given rigid body, deduce from the above Euler's equations that

$$
\left\{\begin{array}{c}
\omega_{3}=\text { const. } \xrightarrow{\text { setas }} K \tag{4}\\
\dot{\omega}_{1}=\frac{\left(-a^{2}+b^{2}\right) K}{\left(a^{2}+b^{2}\right)} \omega_{2} \\
\dot{\omega}_{2}=-\frac{\left(-a^{2}+b^{2}\right) K}{\left(a^{2}+b^{2}\right)} \omega_{1}
\end{array}\right.
$$

(ii) If $b>a \& K>0$, then $\frac{\left(-a^{2}+b^{2}\right) K}{\left(a^{2}+b^{2}\right)}$ is a positive constant and set it as Ω. Deduce from eq.(5) and eq.(6) in (c)(i) that $\ddot{\omega}_{1}=-\Omega^{2} \omega_{1}$
(3 marks)
(iii) By direct substitution, show that $\omega_{1}=A \cos (\Omega t+B) \cdots \cdots$ (8) is the solution to eq.(7) with $A \& B$ constant values linking to the given initial value of $\bar{\omega}$.
(2 marks)
(iv) Substitute eq.(8) into eq.(5) and deduce that

$$
\begin{equation*}
\omega_{2}=-A \sin (\Omega t+B) \tag{9}
\end{equation*}
$$

(v) Show that the magnitude of $\vec{\omega}$ is a constant for all time t.

Useful informations

$V=-\int \vec{F} \cdot d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r} \quad$ where $\quad k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k}}\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1} \quad$ if $\quad m_{2} \gg m_{1}$
For elliptical orbit,i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{c}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-minor } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b) \\ r_{\min }=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)\end{array}\right.$
for plane polar (r, θ) system with unit vectors $\left(\vec{e}_{r}, \vec{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\vec{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \vec{a}=\vec{e}_{r}\left(\ddot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$

Useful informations (continued)

$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha}^{2} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$
$\vec{F}_{e f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\vec{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
\vec{r}^{\prime} refers to fixed(inertial system)
\vec{r} refers to rotatinal(non-inertial system) rotates with $\vec{\omega}$ to \vec{r} system
$\vec{R} \quad$ from the origin of \vec{r} ' to the origin of \vec{r}
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

