UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2016/2017

TITLE OF PAPER : CLASSICAL MECHANICS

COURSE NUMBER : P320

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS TEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) Given the following definite integral of $J(\alpha)=\int_{x_{1}}^{x_{2}} f\left(y(\alpha, x), y^{\prime}(\alpha, x), y^{\prime \prime}(\alpha, x) ; x\right) d x$, where the varied integration path is $y(\alpha, x)=y(x)+\alpha \eta(x), \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and $\left.\frac{d \eta(x)}{d x}\right|_{x=x_{1}}=\left.\frac{d \eta(x)}{d x}\right|_{x=x_{2}}=0 \quad$ as shown in the following diagram :

Use the extremum condition for $J(\alpha)$, i.e., $\left.\frac{\partial J(\alpha)}{\partial \alpha}\right|_{\alpha=0}=0$, to deduce that
f along the extremum path, i.e., $f\left(y(x), y^{\prime}(x), y^{\prime \prime}(x) ; x\right)$, satisfies the following equation:
$\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y^{\prime \prime}}\right)=0$.
(12 marks)
(b) For a certain dynamical system the kinetic energy, T, and potential energy, V, are given by $T=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{1} \dot{q}_{2}+\dot{q}_{2}^{2}\right)$ $V=\frac{3}{2} q_{2}^{2}$
where q_{1}, q_{2} are the generalized coordinates.
(i) Write down Lagrange's equations of motion.
(5 marks)
(ii) From the results in (b)(i), deduce a differential equation for q_{2} only and show that its general solution can be written as $q_{2}(t)=k_{1} \cos (2 t)+k_{2} \sin (2 t)$ where k_{1} and k_{2} are arbitrary constants .
(4 marks)
(iii) Substitute the general solution of q_{2} into the results in (b)(i) and show that the the general solution of q_{1} can be written as $q_{1}(t)=2 k_{1} \cos (2 t)+2 k_{2} \sin (2 t)+k_{3} t+k_{4}$ where k_{3} and k_{4} are arbitrary constants.

Question two

A spherical pendulum of mass m and length b is shown in the figure below:

(a) (i) From $x=\frac{1}{b} \sin (\theta) \cos (\phi), y=b \sin (\theta) \sin (\phi) \& z=-b \cos (\theta)$ and $T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \& V=m g z$, deduce the following Lagrangian for the system in terms of $\theta \& \phi$ as
$L=\frac{1}{2} m b^{2}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2}(\theta)\right)+m g b \cos (\theta) \quad \ldots \ldots$ (1)
(5 marks)
(ii) Write down the equations of motion for $\theta \& \phi$ and deduce that
$\begin{cases}\frac{d p_{\theta}}{d t}=m b^{2} \sin (\theta) \cos (\theta) \dot{\phi}^{2}-m g b \sin (\theta) & \cdots \cdots \\ \frac{d p_{\phi}}{d t}=0 & \ldots \ldots .\end{cases}$
where $p_{\theta}=m b^{2} \dot{\theta} \quad \& \quad p_{\phi}=m b^{2} \sin ^{2}(\theta) \dot{\phi}$
(iii) From eq.(3), one has $p_{\phi}=$ const. $\xrightarrow{\text { setas }} K$, deduce from eq.(2) the following equation for small θ, i.e., $\left(\sin (\theta) \approx \theta\right.$ and $\cos (\theta) \approx 1-\frac{\theta^{2}}{2}$ or 1$)$, that $m^{2} b^{4} \theta^{3} \ddot{\theta}=K^{2}-m^{2} g b^{3} \theta^{4}$
(iv) If $K=0$ in eq.(4), write down the general solution of $\theta(t)$. (3 marks)
(b) (i) Find the Hamiltonian of the system in terms of $\theta, \phi, p_{\theta} \& p_{\phi}$.
(Hint : Since the Lagrangian in (a)(i) is not explicitly depending on t, thus the Hamiltonian H equals to $T+V$)
(ii) Write down the equations of motion for H in (b)(i).

Question three

(a) Given the Lagrangian for the two-body central force system as :
$L=T-V=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{k}{r^{\prime \prime}}$
where μ is the reduced mass of the system, $k \& n$ are positive constants and (r, θ) are polar coordinates of the motion plane with its origin at the center of mass of the two-body system.
(i) Write down the Lagrange's equations of motion for the given system and show that

$$
\left\{\begin{array}{l}
\dot{\theta}=\frac{l}{\mu r^{2}} \\
\mu \ddot{r}-\frac{l^{2}}{\mu r^{3}}+\frac{n k}{r^{n+1}}=0
\end{array}\right.
$$

where the angular momentum l is a constant.
(5 marks)
(ii) In the case of circular orbits, i.e., $r=$ const, , use the results in (a)(i) and $T=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \quad \& \quad V=\frac{k}{r^{n}}$ to find a relation between the kinetic and potential energies and show that $T=-\frac{n}{2} V$
(5 marks)
(b) Starting from the law of conservation of angular momentum $l\left(=\mu r^{2} \dot{\theta}\right)$, derive Kepler's third law, i.e., the relation between the period τ of a closed orbit and the area A of the closed orbit. Show that $\tau=\frac{2 \mu}{l} A$
(c) If an earth satellite of 400 kg mass is having a pure tangential speed $v_{\theta}(=r \dot{\theta})=10,000=10^{4} \mathrm{~m} / \mathrm{s}$ at its near-earth-point 500 km above the earth surface,
(i) calculate the values of l and E of this satellite,
(ii) calculate the values of the eccentricity, ε, and show that the orbit is an elliptical orbit. Also calculate its period.
(a) Two set of coordinate systems are having the same origins. The non-prime system (with position vector denoted as \vec{r} and referred to as "rotating" system) is rotating with an angular velocity $\bar{\sigma}$ about the prime system (with position vector denoted as \vec{r}^{\prime} and referred as "fixed" system and taken as an inertial system). Use the relation that
$\left(\frac{d \vec{F}}{d t}\right)_{\text {fxeed }}=\left(\frac{d \vec{F}}{d t}\right)_{\text {rotating }}+\bar{\omega} \times \vec{F} \quad$ for any vector field $\vec{F} \quad$ where
$\left(\frac{d \vec{F}}{d t}\right)_{\text {jixed }} \& \quad\left(\frac{d \vec{F}}{d t}\right)_{\text {routing }}$ are time derivatives of \vec{F} with respect to the fixed and rotating systems respectively, deduce the following:
$\vec{a}_{e f f}=\vec{a}-\dot{\bar{\omega}} \times \vec{r}-\vec{\omega} \times(\vec{\omega} \times \vec{r})-2 \vec{\omega} \times \vec{v}_{r} \quad$ where
$\bar{v}_{f} \equiv\left(\frac{d \bar{r}^{\prime}}{d t}\right)_{\text {jixed }}, \vec{v}_{r} \equiv\left(\frac{d \bar{r}}{d t}\right)_{\text {roating }}, \vec{a} \equiv\left(\frac{d \bar{v}_{f}}{d t}\right)_{\text {fixed }}, \vec{a}_{e f f} \equiv\left(\frac{d \vec{v}_{r}}{d t}\right)_{\text {rotaing }}$
and $\quad \dot{\bar{\omega}} \equiv\left(\frac{d \vec{\omega}}{d t}\right)_{\text {roating }}$
(Hint : Starting with the equation $\vec{r}^{\prime}=\vec{r}$ (same origin) and taking the time derivative of the equation twice with respect to the fixed system.)
(b)

Referring to the diagram above and considering the body coordinate system (x, y, z) has the same origin as the earth's fixed inertial system $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, i.e., center of the earth . Hanging a motionless simple pendulum of length L and mass m near the earth surface at a northern latitude λ, the pendulum is supposed to pointing direct downward along $-\bar{e}_{=}$direction but instead it is pointing toward the ground with a small angular deviation of δ made with the true downward direction resulting from the centrifugal force $(-m \bar{\omega} \times(\bar{\omega} \times \bar{r}))$ as shown in the diagram below.

Question four (continued)

(i) Show that $\delta \approx \frac{\omega^{2} r_{E} \cos (\lambda) \sin (\lambda)}{g-\omega^{2} r_{E} \cos ^{2}(\lambda)}$
(12 marks)
(Hint: $\vec{F}_{e f f} \approx \vec{e}_{z}(-m g)-m \bar{\omega} \times(\vec{\omega} \times \vec{r}), \vec{r} \approx \vec{e}_{z}\left(r_{E}\right) \&$ $\left.\bar{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\bar{e}_{z}(\omega \sin (\lambda))\right)$
(ii) Given $\lambda=30^{\circ}, L=10 \mathrm{~m}, r_{E}=6400 \mathrm{~km}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $\omega=2 \pi \mathrm{rad} / \mathrm{day}=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}$, determine the value of the deviation angle δ in terms of degree.
(3 marks)

Question five

Consider the motion of the bobs in the double pendulum system in the figure below.

Both pendulums are identical and having the length b and bob of mass m. The motion of both bobs is restricted to lie in the plane of this paper, i.e., $x-y$ plane.
(i) For small θ_{1} and θ_{2}, i.e., $\left(\sin (\theta) \approx \theta\right.$ and $\cos (\theta) \approx 1-\frac{\theta^{2}}{2}$ or 1$)$, show that the Lagrangian for the system can be expressed as:
$L=m b^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m b^{2} \dot{\theta}_{2}^{2}+m b^{2} \dot{\theta}_{1} \dot{\theta}_{2}-m g b\left(1+\theta_{1}^{2}+\frac{\theta_{2}^{2}}{2}\right)$
where the zero gravitational potential is set at the equilibrium position of the lower bob,
i.e., $\theta_{1}=0, \theta_{2}=0$ and $y=0$.
(6 marks)
(ii) Write down the equations of motion and deduce that

$$
\left\{\begin{array}{c}
2 \ddot{\theta}_{1}+\ddot{\theta}_{2}=-2 \frac{g}{b} \theta_{1} \\
\ddot{\theta}_{1}+\ddot{\theta}_{2}=-\frac{g}{b} \theta_{2}
\end{array}\right.
$$

(iii) Deduce from the equations in (ii) the following :

$$
\left\{\begin{array}{l}
\ddot{\theta}_{1}=-2 \frac{g}{b} \theta_{1}+\frac{g}{b} \theta_{2} \\
\ddot{\theta}_{2}=2 \frac{g}{b} \theta_{1}-2 \frac{g}{b} \theta_{2}
\end{array}\right.
$$

Question five (continued)

(iv) Set $\theta_{1}=\hat{X}_{1} e^{i \omega t}$ and $\theta_{2}=\hat{X}_{2} e^{i \omega t}$ (where \hat{X}_{1} and \hat{X}_{2} are constants) and deduce from the equations in (iii) the matrix equation $-\omega^{2} X=A X \quad$ where

$$
X=\binom{\hat{X}_{1}}{\hat{X}_{2}} \text { and } A=\left(\begin{array}{cc}
-\left(2 \frac{g}{b}\right) & \frac{g}{b} \\
2 \frac{g}{b} & -\left(2 \frac{g}{b}\right)
\end{array}\right)
$$

(v) Find the eigenfrequencies, ω, of this coupled system.
(vi) Find the eigenvectors of this coupled system.

Useful informations

$V=-\int \vec{F} \cdot d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r}$ where $k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k}} \quad\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $m_{2} \gg m_{1}$
For elliptical orbit,i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{c}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-minor } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b) \\ r_{\min }=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)\end{array}\right.$
for plane polar (r, θ) system with unit vectors $\left(\bar{e}_{r}, \vec{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\bar{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \bar{a}=\bar{e}_{r}\left(\ddot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$
$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$
$\bar{F}_{e f f}=\bar{F}-m \ddot{\vec{R}}_{j}-m \dot{\bar{\omega}} \times \vec{r}-m \bar{\omega} \times(\bar{\omega} \times \vec{r})-2 m \bar{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
\vec{r}^{\prime} refers to fixed(inertial system)
\vec{r} refers to rotatinal(non-inertial system) rotates with $\bar{\omega}$ to \vec{r}^{\prime} system
\bar{R} from the origin of \bar{r} ' to the origin of \vec{r}
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

