UNIVERSITY OF SWAZILAND103
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
MAIN EXAMINATION 2016/2017
TITLE OF PAPER : ELECTROMAGNETIC THEORY
COURSE NUMBER : P331
TIME ALLOWED : THREE HOURSINSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVEQUESTIONS.EACH QUESTION CARRIES 25 MARKS.MARKS FOR DIFFERENT SECTIONS ARESHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS TEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P331 ELECTROMAGNETIC THEORY

Question one

A very long straight coaxial cable, with an inner solid wire of radius a and an outer hollow wire with inner radius b and outer radius c, is given a potential difference V_{0} across the wires. In between the wires $(a<\rho<b)$ is filled with a layer of insulating material with permittivity ε as shown in the figure below.

(a) From $\nabla^{2} f(\rho)=0$ with boundary conditions of $f(\rho=a)=0$ and $f(\rho=b)=V_{0}$, find the specific solution of $f(\rho)$ and show that

$$
\begin{equation*}
f(\rho)=\frac{V_{0}}{\ln \left(\frac{b}{a}\right)} \ln \left(\frac{\rho}{a}\right) \tag{9marks}
\end{equation*}
$$

(b) Find the electric field \vec{E} from $f(\rho)$ obtained in (a).
(c) (i) Find the surface conduction charge density ρ_{s} on $\rho=a$ and $\rho=b$ conducting surfaces respectively. Then find the total charges deposited on both surfaces, if the total cable length is L, and show that they are equal and opposite.
(4+4 marks) (Hint : For the conducting surfaces in contact with the dielectric region of ε, then $\rho_{s}=\vec{e}_{n} \bullet(\varepsilon \vec{E})$ where \vec{e}_{n} is the normal outward unit vector on conductor surface.)
(ii) Write down the capacitance C as well as the distributive capacitance c_{d} of the given coaxial cable. Show that
$c_{d}=\frac{2 \pi \varepsilon}{\ln \left(\frac{b}{a}\right)}$.
(2 marks)
(iii) If given the values of $a=2 \mathrm{~mm}, b=8 \mathrm{~mm} \& \varepsilon=3 \varepsilon_{0}$, calculate the value of c_{d}.
(3 marks)
(a) A thin conducting wire of length $2 L$, with its central axis coinciding with the z-axis and its centre point coinciding with the origin, carries a steady total current I along positive z-direction as shown in the figure below.

(i) Since the given current source is only along z-axis the vector potential at $P(\rho, \phi, 0)$ is also having only z component A_{z}, i.e.,
$\vec{A}=\vec{e}_{z} A_{z} \quad$ where $\quad A_{z}=\int_{z^{\prime}=-L}^{z^{\prime}=+L} \frac{\mu_{0} I d z^{\prime}}{4 \pi R}=2 \int_{z^{\prime}=0}^{z^{\prime^{\prime}=+L}} \frac{\mu_{0} I d z^{\prime}}{4 \pi \sqrt{\left(z^{\prime}\right)^{2}+\rho^{2}}}$,
carry out the above integral for A_{z} about z^{\prime} and show that
$A_{z}=\frac{\mu_{0} I}{2 \pi} \ln \left(\frac{L+\sqrt{L^{2}+\rho^{2}}}{\rho}\right)$
(Hint : set $\quad z^{\prime}=\rho \tan (\alpha) \quad, \quad \int \sec (\alpha) d \alpha=\ln (\sec (\alpha)+\tan (\alpha))$)
(8 marks)
(ii) For $L \gg \rho$ use $\vec{A} \approx \vec{e}_{z} \frac{\mu_{0} I}{2 \pi} \ln \left(\frac{2 L}{\rho}\right)$ and $\vec{B}=\vec{\nabla} \times \vec{A}$ to show that $\vec{B}=\vec{e}_{\phi} \frac{\mu_{0} I}{2 \pi \rho}$.

Question two (continued)

(b) Two very long thin conducting wires parallel to z-axis and lying on the $x=0$ plane, ie, $y-z$ plane, one situated at $y=-a$ and carries a current $I \mathrm{~A}$ along $-z$ direction and the other situated at $y=+a$ and carries a current $I \mathrm{~A}$ along +z direction as shown in the following diagram.

A rectangular conducting loop of dimension $D \times c$ is placed on $x=0$ plane and a distance of d away from the z -axis as shown in the above diagram.
(i) Utilize the result in (a)(ii), apply the superposition principle to deduce that the magnetic field at point $P:(0, y, z)$ within the rectangular loop due to the two parallel conducting wires is

$$
\begin{equation*}
\vec{B}(0, y, z)=\vec{e}_{x} \frac{\mu_{0} I}{2 \pi}\left(\frac{1}{y+a}-\frac{1}{y-a}\right) . \tag{4marks}
\end{equation*}
$$

(Hint: on $x=0$ plane $\vec{e}_{\dot{\phi}}=-\vec{e}_{x}$)
(ii) Find the total magnetic flux $\Phi_{m}=\int_{s} \vec{B} \bullet d \vec{s}$ passing through the surface area confined by the rectangular loop, i.e., $S: x=0, d \leq y \leq d+D, b \leq z \leq b+c$ and $d \vec{s}=\vec{e}_{x} d y d z$, in terms of $\mu_{0}, a, b, c, d, D \& I$. Show that the mutual inductance between the rectangular loop and the parallel wires is

$$
\begin{equation*}
M=\frac{\mu_{0} c}{2 \pi} \ln \left(\frac{(d+D+a)(d-a)}{(d+D-a)(d+a)}\right) \tag{8marks}
\end{equation*}
$$

Question three
(a) Apply an electric field \vec{E} to a pure conducting solid material. According to modified Drude's model, the equation of motion for an average conduction electron in the solid material can be written as $m_{e} \frac{d \vec{v}_{d}}{d t}=-e \vec{E}-\frac{2 m_{e} \vec{v}_{d}}{\tau_{f}}$
where $-e \& m_{e}$ are the electron charge and mass respectively.
(i) Explain briefly the meanings of \vec{v}_{d}, τ_{f} and $-\frac{2 m_{e} \vec{v}_{d}}{\tau_{f}}$. (3 marks)
(ii) In the steady state case, i.e., $\frac{d \vec{v}_{d}}{d t}=0$, deduce the following point form of Ohm's law $\vec{J}=\sigma \vec{E} \quad$ where $\sigma=\frac{n e^{2}}{2 m_{e}} \tau_{f}$ and n is the number density of the conduction electrons in the material.
(6 marks)
(Hint : $\vec{J}=\rho_{v} \vec{v}_{d}=-n e \vec{v}_{d}$)
(iii) Pure solid Ruthenium Ru has an atomic weight $=101.07 \mathrm{~kg} / \mathrm{kg}$-mole, a density $=12200 \mathrm{~kg} / \mathrm{m}^{3}$ and a conductivity $\sigma=1.4 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$ at room temperature.
(A) Find the number of conduction electrons per meter cube, i.e., number density n, for metal Ru if each $R u$ atom contributes two conduction electrons.
(4 marks)
(Hint : one kg -mole pure metal contains 6.022×10^{26} atoms)
(B) Find the value of τ_{f} for Ru metal at room temperature. (4 marks)
(b) The Maxwell's equations for a material region with parameters of $(\mu, \varepsilon, \sigma)$ are

$$
\left\{\begin{array}{l}
\vec{\nabla} \bullet \vec{E}(\text { space }, t)=0 \tag{1}\\
\vec{\nabla} \bullet \vec{H}(\text { space }, t)=0 \\
\vec{\nabla} \times \vec{E}(\text { space }, t)=-\mu \frac{\partial \vec{H}(\text { space }, t)}{\partial t} \\
\vec{\nabla} \times \vec{H}(\text { space }, t)=\sigma \vec{E}(\text { space }, t)+\varepsilon \frac{\partial \vec{E}(\text { space }, t)}{\partial t}
\end{array}\right.
$$

(i) Setting $\vec{E}($ space,$t)=\overrightarrow{\hat{E}}($ space $) e^{i \omega t}$ \& $\vec{H}($ space, $t)=\overrightarrow{\hat{H}}($ space $) e^{i \omega t}$, deduce the following time-harmonic Maxwell's equations :

$$
\left\{\begin{array}{l}
\vec{\nabla} \bullet \overrightarrow{\hat{E}}(\text { space })=0 \tag{5}\\
\vec{\nabla} \bullet \hat{\hat{H}}(\text { space })=0 \\
\vec{\nabla} \times \overrightarrow{\hat{E}}(\text { space })=-i \omega \mu \overrightarrow{\hat{H}}(\text { space }) \\
\vec{\nabla} \times \hat{\hat{H}}(\text { space })=(\sigma+i \omega \varepsilon) \hat{\hat{E}}(\text { space })
\end{array}\right.
$$

(ii) From equations in (b)(i) deduce the following wave equation for $\overline{\hat{H}}$ (space) as

$$
\nabla^{2} \overrightarrow{\hat{H}}(\text { space })=\hat{\gamma}^{2} \overrightarrow{\hat{H}}(\text { space }) \text { where } \hat{\gamma}=\sqrt{i \omega \mu(\sigma+i \omega \varepsilon)}
$$

Question four

(a) A uniform plane wave traveling along $+z$ direction with the field components $E_{x}(z) \& H_{y}(z)$ has a complex electric field amplitude $\hat{E}_{m}^{+}=80 e^{i 40^{0}} \mathrm{~V} / \mathrm{m}$ and propagates at a frequency $f=6 \times 10^{5} \mathrm{~Hz}$ in a material region has the parameters of $\mu=\mu_{0}, \varepsilon=4 \varepsilon_{0} \& \frac{\sigma}{\omega \varepsilon}=0.7$.
(i) Find the values of the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave.
(4 marks)
(ii) Express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (a)(i) inserted.
(4 marks)
(iii) Find the values of the penetration depth, wave length and phase velocity of the given wave.
(3 marks)
(b) An uniform plane wave is incident normally upon an interface separating two regions . The incident wave is given as $\left(\hat{E}_{x 1}^{+}=\hat{E}_{m 1}^{+} e^{-\hat{\gamma}_{1} z}, \hat{H}_{y 1}^{+}=\frac{\hat{E}_{m 1}^{+}}{\hat{\eta}_{1}} e^{-\hat{\gamma}_{1} z}\right)$ and thus the reflected and transmitted wave can be written as $\left(\hat{E}_{x 1}^{-}=\hat{E}_{m 1}^{-} e^{+\hat{y}_{1} z}, \hat{H}_{y 1}^{-}=-\frac{\hat{E}_{m 1}^{-}}{\hat{\eta}_{1}} e^{+\hat{y}_{1} z}\right)$ and $\left(\hat{E}_{x 2}^{+}=\hat{E}_{m 2}^{+} e^{-\hat{\gamma}_{2} z}, \hat{H}_{y 2}^{+}=\frac{\hat{E}_{m 2}^{+}}{\hat{\eta}_{2}} e^{-\hat{\gamma}_{2} z}\right)$ respectively as shown below: Region $\left.\mid \int \mu_{1}, \epsilon_{1}, \sigma_{1}\right) \mid \operatorname{Region} 2\left(\mu_{2}, \epsilon_{2}, \sigma_{2}\right)$

Question four (continued)

(i) From the boundary conditions at the interface, i.e., both total $\hat{E}_{x} \& \hat{H}_{y}$ are continuous at $\mathrm{z}=0$, deduce the following

$$
\left\{\begin{array}{l}
\hat{E}_{m 1}^{-}=\hat{E}_{m 1}^{+} \frac{\hat{\eta}_{2}-\hat{\eta}_{1}}{\hat{\eta}_{2}+\hat{\eta}_{1}} \tag{8marks}\\
\hat{E}_{m 2}^{+}=\hat{E}_{m 1}^{+} \frac{2 \hat{\eta}_{2}}{\hat{\eta}_{2}+\hat{\eta}_{1}}
\end{array}\right.
$$

(ii) If region 1 is air (i.e., $\hat{\eta}_{1}=120 \pi=377 \Omega$), region 2 is a cosy medium with parameters of $\left(\mu_{2}=\mu_{0}, \varepsilon_{2}=9 \varepsilon_{0}, \frac{\sigma_{2}}{\omega \varepsilon_{2}}=1\right)$, and the incident plane wave is having a complex amplitude of $\hat{E}_{m 1}^{+}=100 e^{i s 0^{\circ}} \mathrm{V} / \mathrm{m}$ and propagates at a frequency of $f=10^{6} \mathrm{~Hz}$.
(A) Calculate the value of $\hat{\eta}_{2}$.
(2 marks)
(B) Calculate the values of $\hat{E}_{m 1}^{-}$.
(4 marks)

Question five
110
A uniform plane wave $\left(\hat{E}_{x 1}^{+}, \hat{H}_{y 1}^{+}\right)$, with a frequency f, is incident normally on a layer of thickness d_{2}, and emerges into region 3 as shown below :

$$
\begin{aligned}
& \text { Region } 1:\left(\mu_{1}, \epsilon_{1}, \sigma_{1}\right): R_{\text {egion } 2:\left(\mu_{2}, \epsilon_{2}, \sigma_{2}\right)} \operatorname{Region} 3:\left(\mu_{3}, \epsilon_{3}, \sigma_{3}\right) \\
& \hat{\hat{E}_{x 1}}=\hat{E}_{m i}^{+} \hat{e}^{-\hat{y} z} \quad: \hat{E}_{x 2}^{+}=\hat{E}_{m 2}^{+} e^{-\hat{\partial}_{2} z}: \hat{E}_{x 3}^{+}=\hat{E}_{m 3}^{+} e^{-\hat{y}_{3} z}
\end{aligned}
$$

$0_{1}, 0_{2} \& 0_{3}$ are the respective origins for region $1,2 \& 3$ chosen at the first and second interface.
(a) Define for the $i^{\text {th }}$ region $(i=1,2,3)$ the reflection coefficient $\hat{\Gamma}_{i}(z)$ and the total wave impedance $\hat{Z}_{i}(z)$ and deduce the following:

$$
\left\{\begin{array}{l}
\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \\
\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{2 \hat{y}_{i}\left(z^{\prime}-z\right)} \quad \text { where } z^{\prime} \& z \text { are two positions in } i^{\text {th }} \text { region }
\end{array}(2+7 \text { marks })\right.
$$

(b) If $f=10^{7} \mathrm{~Hz}$ and $d_{2}=\frac{\lambda_{2}}{4}$, region $1 \& 3$ are air regions and region 2 is a lossless region with parameters $\mu_{2}=\mu_{0}, \varepsilon_{1}=16 \varepsilon_{0} \& \frac{\sigma}{\omega \varepsilon}=0$,
(i) find the values of $\beta_{1}, \beta_{2}, \beta_{3}, \lambda_{2} \& \hat{\eta}_{2}, \quad$ (note : $\hat{\eta}_{1}=\hat{\eta}_{3}=120 \pi \Omega$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$)
(4 marks)
(ii) starting with $\hat{\Gamma}_{3}(z)=0$ for the rightmost region, i.e., region 3 , and using continuous \hat{Z} at the interface as well as the equations in (a), find the values of $\hat{Z}_{3}(0), \hat{Z}_{2}(0), \hat{\Gamma}_{2}(0), \hat{\Gamma}_{2}\left(-d_{2}\right), \hat{Z}_{2}\left(-d_{2}\right), \hat{Z}_{1}(0) \& \hat{\Gamma}_{1}(0)$
(10 marks)
(iii) find the value of $\hat{E}_{m 1}^{-}$if given $\hat{E}_{m 1}^{+}=50 \mathrm{~V} / \mathrm{m}$.
$e=1.6 \times 10^{-19} \mathrm{C}$
$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{H}}{\mathrm{m}}$
$\varepsilon_{0}=8.85 \times 10^{-12} \frac{F}{m}$
$\alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1}$
$\beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1}$
$\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\hat{\eta}=\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt[4]{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}} e^{\frac{1}{2} \tan ^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)}$
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \quad \Omega=377 \quad \Omega$
$\beta_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}}$
$\oiint_{S} \vec{E} \cdot d \vec{s}=\frac{1}{\varepsilon} \iiint_{V} \rho_{v} d v$
$\oint_{S} \vec{B} \bullet d \vec{s} \equiv 0$
$\oint_{L} \vec{E} \cdot d \vec{l}=-\frac{\partial}{\partial t}\left(\iint_{S} \vec{B} \bullet d \vec{s}\right)$
$\oint_{L} \vec{B} \bullet d \vec{l}=\mu \iint_{S} \vec{J} \bullet d \vec{s}+\mu \varepsilon \frac{\partial}{\partial t}\left(\iint_{S} \vec{E} \bullet d \vec{s}\right)$
$\bar{\nabla} \cdot \vec{E}=\frac{\rho_{v}}{\varepsilon}$
$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t}$
$\vec{J}=\sigma \vec{E}$
$\vec{D}=\varepsilon \vec{E}=\varepsilon_{0} \vec{E}+\vec{P} \quad \& \quad \vec{B}=\mu \vec{H}=\mu_{0} \vec{H}+\vec{M}$
$\oiint_{s} \vec{F} \bullet d \vec{s} \equiv \oiiint_{v}(\bar{\nabla} \bullet \vec{F}) d v \quad$ divergence theorem
$\oint_{L} \vec{F} \bullet d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s} \quad$ Stokes' theorem
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F}) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} f) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \bullet \vec{F})-\nabla^{2} \vec{F}$
$\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{\rho} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}$

$$
=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}
$$

$\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}$
$=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}$
$\bar{\nabla} \times \vec{F}=\vec{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}^{\prime}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)$
$=\frac{\vec{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial z}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\vec{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{\rho}\right)}{\partial \phi}\right)$
$=\frac{\vec{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\vec{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\vec{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)$
where $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{\rho} F_{\rho}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad$ and
$d \vec{l}=\vec{e}_{x} d x+\vec{e}_{y} d y+\vec{e}_{z} d z=\vec{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\vec{e}_{z} d z=\vec{e}_{r} d r+\vec{e}_{\theta} r d \theta+\vec{e}_{\phi} r \sin (\theta) d \phi$
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$
$=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}$
$\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \quad, \quad \hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)-\hat{\eta}_{i}} \quad$ \&
$\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{2 \dot{z}_{i}\left(z^{\prime}-z\right)} \quad$ where $z^{\prime} \& z$ are two positions in $i^{i h}$ region

