```
UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION 2016/2017
TITLE OF PAPER : ELECTROMAGNETIC THEORY
COURSE NUMBER : P331
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FTVE
QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE
SHOWN IN THE RIGHT-HAND MARGIN.
```

THIS PAPER HAS ELEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

## Question one

(a) A dielectric spherical ball of radius $R_{0}$ with a permittivity $\varepsilon$, centered at the origin and embedded in air of permittivity $\varepsilon_{0}$, carries a volume charge density distribution of $\rho_{v}=10\left(1+\alpha r^{2}\right) \mathrm{C} / \mathrm{m}^{3}$ where $\alpha$ is a constant.
(i) Find the total electric charge $Q_{0}$ of the dielectric spherical ball in terms of $R_{0} \& \alpha$ and show that
$Q_{0}=4 \pi\left(\frac{10}{3} R_{0}^{3}+2 \alpha R_{0}^{5}\right)$
(Hint : $\left.\quad d v=r^{2} \sin (\theta) d r d \theta d \phi\right)$
(ii) Set $\vec{E}=\vec{e}_{r} E_{r}(r)$ (make a brief justification of this setting), use the integral form of Gauss's law and choose and draw proper Gaussian surfaces to find $\vec{E}$ in terms of $r, R_{0} \& \alpha$ for $0 \leq r \leq R_{0} \& r \geq R_{0}$ regions. ( $\mathbf{~}+\mathbf{1 + 6}$ marks)
(iii) Find the value of $\alpha$ in terms of $R_{0}$ such that the electric field everywhere outside the spherical ball is zero.
( 2 marks )
(b) A positron of charge $+e$ having an initial constant velocity $\vec{e}_{x} v_{0}$ and projected into a constant electric and magnetic field $\vec{E}=\vec{e}_{x} E_{0}$ and $\vec{B}=\vec{e}_{y} B_{0}$, taking its entrance position as the origin of Cartesian coordinate and entrance moment as $t=0$, its equation of motion is $m_{e} \frac{d \vec{v}(t)}{d t}=e \vec{E}+e \vec{v}(t) \times \vec{B} \quad \cdots \ldots$ (1) where $\vec{v}(t)=\vec{e}_{x} v_{x}(t)+\vec{e}_{y} v_{y}(t)+\vec{e}_{z} v_{z}(t)$.
(i) Decompose eq.(1) into three scalar differential equations and deduce that

$$
\left\{\begin{array}{l}
m_{e} \frac{d v_{x}(t)}{d t}=e E_{0}-e v_{z}(t) B_{0}  \tag{2}\\
m_{e} \frac{d v_{y}(t)}{d t}=0 \\
m_{e} \frac{d v_{z}(t)}{d t}=e v_{x}(t) B_{0}
\end{array}\right.
$$

(ii) Eq.(2) \& eq.(4) are coupled differential equations for $v_{x}(t) \& v_{z}(t)$. De-couple them and deduce that

$$
\begin{equation*}
\frac{d^{2} v_{x}(t)}{d t^{2}}=-\omega^{2} v_{x}(t) \text { where } \omega=\frac{e B_{0}}{m_{e}} \tag{5}
\end{equation*}
$$

## Question one (continued)

(iii) The general solution of $v_{x}(t)$ from eq.(5) can be written as $\nu_{x}(t)=k_{1} \cos (\omega t)+k_{2} \sin (\omega t)$
where $k_{1} \& k_{2}$ are arbitrary constants.
Substitute eq.(6) into eq.(2) and deduce that the general solution of $v_{z}(t)$ is $v_{z}(t)=\frac{E_{0}}{B_{0}}+k_{1} \sin (\omega t)-k_{2} \cos (\omega t) \quad \cdots \ldots$ (7). (2 marks)
(iv) From the given initial conditions of $v_{x}(t) \& v_{z}(t)$, i.e., $v_{x}(0)=v_{0} \& v_{z}(0)=0$, and the general solutions of $v_{x}(t) \& v_{z}(t)$, i.e., eq.(6) \& eq.(7), find the values of $k_{1} \& k_{2}$ in terms of $v_{0}, E_{0} \& B_{0}$ and then write down the specific solutions of $v_{x}(t) \& v_{z}(t)$.
(3+1 marks)
(a) A very thin conducting disk of radius $a$ and conductivity $\sigma$ is placed on $x-y$ plane and centred at the origin as shown in the following diagram


A time-dependent magnetic field $\vec{B}=\vec{a}_{z} B_{0} \cos (\omega t)$, where $B_{0} \& \omega$ are constants, is applied to the conducting disk.
(i) Set the induced electric field in the conducting disk as $\bar{E}=\vec{e}_{\phi} E_{\phi}(\rho)$ (provide a brief justification), use the integral form of Faraday's law, and draw appropriate closed loop to deduce that

$$
\vec{E}=\vec{e}_{\phi} E_{\phi}(\rho) .
$$

(ii) Based on the result of (a)(i), write down the induced current density in the conducting disk.
(b) A two-parallel conducting plate capacitor system is shown in the following diagram

where $A$ is the plate surface area, $d$ is the plate separation and $\varepsilon$ is the dielectric constant of the insulating material layer in-between the two plates.

## Question two (continued)

17
(i) From $\nabla^{2} f(x)=0$ with boundary conditions of $f(x=0)=0$ and $f(x=d)=V_{0}$, find the specific solution of $f(x)$.
(4 marks)
(ii) Find $\vec{E}$ from $f(x)$ obtained in (b)(i) and then write down $\vec{D}$ \& $\vec{P}$ in-between the two conducting plates.
(4 marks)
(iii) Use $\rho_{s}=D_{n}$ where $\rho_{s} \& D_{n}$ are the surface conduction charge density and normal outward $\vec{D}$ component on the conductor's surface respectively, find $\rho_{s}$ on both $x=0$ and $x=d$ conductor's surfaces respectively. Then find the total charge on both surfaces with surface area $A$ and show that they are equal and opposite.
( 5 marks )
(iv) Write down the capacitance of this two-parallel conducting plate capacitor system.
( 1 mark)

A static current $I$ flows in the primary coil of $n_{1}$ turn toroid, wired around an iron ring core of magnetic permeability $\mu$ with the square cross-section area $(b-a)^{2}$ as shown below:

where $z$-axis is pointing out of this paper.
(a) Set $\vec{B}=\vec{e}_{\phi} B_{\phi}(\rho)$ (justify this briefly) and use the integral form of Ampere's law (choose and draw proper closed loops) to find the magnetic field $\vec{B}$ within the iron core, i.e., $a \leq \rho \leq b \& 0 \leq z \leq(b-a)$ region. Show that
$\vec{B}=-\vec{a}_{\phi} \frac{\mu n_{1} I}{2 \pi \rho}$ within the iron core.
(b) Find the total magnetic flux $\Psi_{m}$ passing through the cross-section area $(b-a)^{2}$ of the iron ring in counter clockwise sense, i.e., $\int \vec{B} \bullet d \vec{s}$ where $S: a \leq \rho \leq b, 0 \leq z \leq(b-a) \& d \vec{s}=\vec{a}_{\phi} d \rho d z$, in terms of $a, b, n_{1}, \mu \& I$, i.e., show that $\Psi_{m}=-\frac{\mu n_{1} I}{2 \pi} \times \ln \left(\frac{b}{a}\right) \times(b-a)$
(c) Find the self-inductance $L$ of the primary coil as well as the mutual inductance $M$ of the secondary coil due to the primary coil in terms of $a, b, \mu, n_{1} \& n_{2}$.
( 5 marks)
(d) (i) If the primary coil carries a sinusoidal current of $I_{0} \sin (\omega t)$ instead of carrying a static current $l$, find the induced e.m.f. $V_{2}(t)$ in the secondary coil in terms of $a, b, \omega, n_{1}, n_{2}, \mu \& I_{0}$ under quasi static situation.
( 5 marks)
(ii) If the potential drop for the primary coil due to its resistance is negligible compared to the one due to its self-inductance, i.e., $V_{1}(t) \approx L \frac{d I}{d t}$, show that

$$
\begin{equation*}
\frac{\left|V_{2}(t)\right|}{\left|V_{1}(t)\right|}=\frac{n_{2}}{n_{1}} . \tag{4marks}
\end{equation*}
$$

(a) (i) For any closed surface $S$, enclosing a volume $V$, the integral form of the continuity equation for electric charges in Electromagnetic theory can be written as $\oint_{S} \vec{J} \cdot d \vec{s}=-\frac{d}{d t}\left(\oint_{V} \rho_{v} d v\right)$. Explain briefly the meaning of the left hand side and the right hand side of this equation and indicate which law in physics it describes.
( $3+1$ marks )
(ii) Use the-divergence theorem to transform the above integral form of continuity equation for electric charges into its differential form.
( 3 marks)
(iii) (A) Show that without introducing the displacement current term, i.e., $\frac{\partial \vec{D}}{\partial t}$, in the equation for Ampere's law, i.e., $\vec{\nabla} \times \vec{H}=\vec{J}$ instead of $\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$, Maxwell's equations would contradict the continuity equation for electric charges.
( 2 marks)
(B) Show that by including the displacement current term, Maxwell's equations are in agreement with the continuity equation.
( 4 marks)
(b) (i) From the time-dependent Maxwell's equations deduce the following wave equation for $\vec{E}$ in the material region with parameters of $\mu, \varepsilon \& \sigma$ where $\rho_{v}=0 \& \vec{J}=\sigma \vec{E}$, as
$\nabla^{2} \vec{E}=\mu \sigma \frac{\partial \vec{E}}{\partial t}+\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}$
(ii) By direct substitution, show that $E_{x}=\hat{E}_{m} e^{\hat{\gamma}=} e^{i \omega t}$ (where $\hat{E}_{m}$ is any constant, $\omega$ is any frequency and $\hat{\gamma}=\sqrt{i \omega \mu \sigma-\omega^{2} \mu \varepsilon}$ ) is a solution to the $E_{x}$ part of the wave equation in (a)(i), i.e., $\nabla^{2} E_{x}=\mu \sigma \frac{\partial E_{x}}{\partial t}+\mu \varepsilon \frac{\partial^{2} E_{x}}{\partial t^{2}}$.
( 6 marks )

## Question five

A stationary weather balloon, high above the sea surface (taken as $z=0$ plane), radiates a spherical wave of frequency $f$. When the radiated wave reaches the sea surface directly below the balloon, it can be considered as a uniform plane wave incident normally upon the sea surface, locally at least, as shown in the following diagram.


Assuming the sea water has the constants $\mu=\mu_{0}, \varepsilon=81 \varepsilon_{0} \& \sigma=4 \Omega^{-1} \mathrm{~m}^{-1}$ and $\hat{E}_{x}^{+}(0)=\hat{E}_{m}^{+}=1 \mathrm{~V} / \mathrm{m}$.
(a) If $f=10^{4} \mathrm{~Hz}$ (i.e., in the very low frequency VLF range),
(i) find the values of the loss tangent $\frac{\sigma}{\omega \varepsilon}$, the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave at this frequency in the sea,
(2+2+2 marks)
(ii) express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (a)(i) inserted for this transmitted wave, and
(iii) find the values of the penetration depth, the wave length and phase velocity of the given wave at this frequency in the sea.
( 3 marks )
(b) If $f=1000 \mathrm{~Hz}$ (i.e., in the extremely low frequency ELF range),
(i) find the values of the loss tangent $\frac{\sigma}{\omega \varepsilon}$, the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave at this frequency in the sea, and (2+2+2 marks)
(ii) find the values of the penetration depth, the wave length and phase velocity of the given wave at this frequency in the sea.
( 3 marks)
(c) Based on the results of (a)(iii) and (b)(ii), comment on the effectiveness of undersea radio communication.
( 1 mark)

$$
\begin{aligned}
& e=1.6 \times 10^{-19} C \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mu_{0}=4 \pi \times 10^{-7} \frac{H}{m} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \frac{F}{m} \\
& \alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1} \\
& \beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1} \\
& \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \hat{\eta}=\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt[4]{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}} e^{i \frac{1}{2} \tan ^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)} \\
& \eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \quad \Omega=377 \Omega \\
& \beta_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \\
& \oiint_{S} \vec{E} \cdot d \vec{s}=\frac{1}{\varepsilon} \iiint_{V} \rho_{v} d v \\
& \oiint_{S} \vec{B} \cdot d \vec{S} \equiv 0 \\
& \oint_{L} \vec{E} \cdot d \vec{l}=-\frac{\partial}{\partial t}\left(\iint_{S} \vec{B} \cdot d \vec{s}\right) \\
& \oint_{L} \vec{B} \bullet d \vec{l}=\mu \iint_{S} \vec{J} \bullet d \vec{S}+\mu \varepsilon \frac{\partial}{\partial t}\left(\iint_{S} \vec{E} \bullet d \vec{s}\right) \\
& \vec{\nabla} \cdot \vec{E}=\frac{\rho_{\nu}}{\varepsilon} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t} \\
& \vec{J}=\sigma \vec{E}
\end{aligned}
$$

$\vec{D}=\varepsilon \vec{E}=\varepsilon_{0} \vec{E}+\vec{P} \quad \& \quad \vec{B}=\mu \vec{H}=\mu_{0} \vec{H}+\vec{M}$
$\oiint_{S} \vec{F} \cdot d \vec{s} \equiv \oiiint \int_{V}(\vec{\nabla} \bullet \vec{F}) d v \quad$ divergence theorem
$\oint_{L} \vec{F} \cdot d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{s} \quad$ Stokes' theorem
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F}) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} f) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\nabla^{2} \vec{F}$
$\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{p} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}$
$=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}$
$\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}$
$=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}$
$\vec{\nabla} \times \vec{F}=\vec{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)$
$=\frac{\bar{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial z}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\vec{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{p}\right)}{\partial \phi}\right)$
$=\frac{\bar{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\vec{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\vec{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)$
where $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{p} F_{p}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad$ and $d \vec{l}=\vec{e}_{x} d x+\vec{e}_{y} d y+\vec{e}_{z} d z=\vec{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\vec{e}_{z} d z=\vec{e}_{r} d r+\vec{e}_{\theta} r d \theta+\vec{e}_{\phi} r \sin (\theta) d \phi$
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$

$$
=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

$\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \quad, \quad \hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)-\hat{\eta}_{i}} \quad$ \&
$\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{2 \hat{y}_{i}\left(z^{\prime}-z\right)}$ where $z^{\prime *} \& z$ are two positions in $i^{\text {th }}$ region

