## FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS
MAIN EXAMINATION: 2016/2017

## TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442
TIME ALLOWED: THREE HOURS

## INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

## Useful Data:

1 unified mass unit $(u)=1.6605 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / c^{2}$
Planck's constant $h=6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann's constant $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro's number $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Speed of light (vacuum) $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
electron mass $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=5.4858 \times 10^{-4} \mathrm{u}=0.511 \mathrm{MeV} / c^{2}$
neutron mass $m_{n}=1.6749 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=939.573 \mathrm{MeV} / \mathrm{c}^{2}$
proton mass $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}=1.0072765 \mathrm{u}=938.280 \mathrm{MeV} / c^{2}$
1 year $=3.156 \times 10^{7} \mathrm{~s}$
nuclear radius, $R \approx r_{0} A^{1 / 3}$, where $r_{0}=1.2 \mathrm{fm}$
fine structure constant, $\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar \epsilon}=\frac{1}{137}$
$\hbar c=197 \mathrm{MeVfm}$
The table of nuclear properties is provided in the next page.

| Nuclide | Z | A | Atomic mass (u) | $I^{\text {a }}$ | Abundance or Half life |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | 1 | 1 | 1.007825 | $1 / 2^{+}$ | 99.985\% |
| He | 2 | 4 | 4.002603 | $0^{+}$ | 99.99986\% |
| Li | 3 | 7 | 7.016003 | $3 / 2^{-}$ | 92.5\% |
| Be | 4 | 11 | 11.021658 | $1 / 2^{+}$ | $13.8 \mathrm{~s} \mathrm{( } \beta^{-}$) |
| B | 5 | 11 | 11.009305 | $3 / 2^{-}$ | 80.2\% |
| C | 6 | 12 | 12.00000 | $0^{+}$ | 99.89\% |
| N | 7 | 15 | 15.00109 | $1 / 2^{-}$ | 0.366\% |
| N | 7 | 18 | 18.014081 | $1^{-}$ | 0.63 s |
| O | 8 | 15 | 15.003065 | $1 / 2^{-}$ | 122 s |
| 0 | 8 | 16 | 15.994915 | $0^{+}$ | 99.76\% |
| O | 8 | 18 | 17.999160 | $0^{+}$ | 0.204\% |
| F | 9 | 18 | 18.000937 | $1^{+}$ | 110.0 min |
| Ne | 10 | 20 | 19.992436 | $0^{+}$ | 90.51\% |
| Ne | 10 | 22 | 21.991383 | $0^{+}$ | 9.33\% |
| Na | 11 | 22 | 21.994434 | $3^{+}$ | 2.60 yrs |
| Mg | 12 | 21 | 21.000574 | $0^{+}$ | 3.86 s |
| Al | 13 | 27 | 26.981539 | $5 / 2^{+}$ | 100.0\% |
| Si | 14 | 30 | 29.973770 | $0^{+}$ | 3.10\% |
| Si | 14 | 32 | 31.974148 | $0^{+}$ | 105 yrs |
| P | 15 | 30 | 29.978307 | $1^{+}$ | 2.50 min |
| P | 15 | 32 | 31.971725 | $1^{+}$ | 14.3 days |
| S | 16 | 32 | 31.972071 | $0^{+}$ | 95.02\% |
| Cl | 17 | 37 | 36.965903 | $3 / 2^{+}$ | 24.23\% |
| Ar | 18 | 37 | 36.966776 | $3 / 2^{+}$ | 35.0 days |
| K | 19 | 37 | 36.973377 | $3 / 2^{-}$ | 1.23 s |
| Ca | 20 | 43 | 42.958766 | $7 / 2^{-}$ | 0.135\% |
| Ca | 20 | 47 | 46.954543 | $7 / 2^{-}$ | 4.54 days ( $\beta^{-}$) |
| Sc | 21 | 47 | 46.952409 | 7/2- | 3.35 days ( $\beta^{-}$) |
| Fe | 26 | 56 | 55.934439 | $0^{+}$ | 91.8\% |
| Fe | 26 | 60 | 59.934078 | $0^{+}$ | 1.5 Myrs |
| Co | 27 | 60 | 59.933820 | $5^{+}$ | 5.27 yrs |
| Ni | 28 | 60 | 59.930788 | $0^{+}$ | 26.1\% |
| Ni | 28 | 64 | 63.927968 | $0^{+}$ | 0.91\% |
| Ni | 28 | 65 | 64.930086 | $5 / 2^{-}$ | $2.52 \mathrm{hrs}\left(\beta^{-}\right)$ |
| Cu | 29 | 63 | 62.929599 | $3 / 2^{-}$ | 69.2\% |
| Cu | 29 | 64 | 63.929800 | $1^{+}$ | 12.7 hrs |
| Cu | 29 | 65 | 64.927793 | $3 / 2^{+}$ | 30.8\% |
| Zn | 30 | 64 | 63.929145 | $0^{+}$ | 48.6\% |
| Ru | 44 | 104 | 103.905424 | $0^{+}$ | 18.7\% |
| Ru | 44 | 105 | 104.907744 | $3 / 2^{+}$, | 4.44 hrs ( $\beta^{-}$) |
| Pd | 46 | 105 | 104.905079 | $5 / 2^{+}$ | 22.2\% |
| Cs | 55 | 137 | 136.907073 | $7 / 2^{+}$ | $30.2 \mathrm{yrs}^{\left(\beta^{-}\right)}$ |
| Ba | 56 | 137 | 136.905812 | $3 / 2^{+}$ | $11.2 \%$ |
| T] | 81 | 203 | 202.972320 | $1 / 2^{+}$ | 29.5\% |
| Os | 76 | 191 | 190.960920 | 9/2 ${ }^{-}$ | 15.4 days ( $\beta^{-}$) |
| Ir | 77 | 191 | 190.960584 | $3 / 2^{+}$ | 37.3\% |
| Au | 79 | 199 | 198.968254 | $3 / 2^{+}$ | 16.8\% |

## Question 1

## 149

(a) Calculate the approximate density of nuclear matter in $\mathrm{kg} / \mathrm{m}^{3}$. Hint: Use the given expression for the nuclear radius.
(b) How does this compare with the atomic density? Hint: Assume an atomic radius to be of the order of one Angstrom.
(c) Certain radioactive nuclei emit $\alpha$ particles. Lets assume that $\alpha$ particles are emitted with kinetic energy 4 MeV .
i. What is their velocity in $\mathrm{m} / \mathrm{s}$ ?
ii. Are relativistic effects negligible?
iii. What is the closest that such an $\alpha$ particle can get to the center of an Au nucleus? Hint: Assume a head on collision that is prevented by the repulsive coulomb interaction?

## Question 2

(a) In this problem we compare the binding of ${ }^{4} \mathrm{He}$ with ${ }^{3} \mathrm{He}$ and ${ }^{16} \mathrm{O}$ with ${ }^{15} \mathrm{~N}$.
i. Calculate the binding energy per nucleon for ${ }^{4} \mathrm{He}$
ii. Calculate the binding energy of the last neutron in ${ }^{4} \mathrm{He}$. How does it compare with the binding energy per nucleon of this nucleus? Note: Mass of ${ }^{3} \mathrm{He}$ is 3.016029 u .
iii. Calculate the binding energy per nucleon for ${ }^{16} \mathrm{O}$
iv. Calculate the binding energy of the last neutron in ${ }^{16} \mathrm{O}$. How does it compare with the binding energy per nucleon of this nucleus? Note: Mass of ${ }^{15} \mathrm{O}$ can be found page 3 .
v. What does this tell you about the stability of ${ }^{4} \mathrm{He}$ relative to ${ }^{3} \mathrm{He}$, and of ${ }^{16} \mathrm{O}$ relative to ${ }^{15} \mathrm{~N}$ ?
(b) Consider an $\alpha$ decay process in which the parent nucleus is originally at rest.
(b) Consider an $\alpha$ decay process in which the parent nucleus is originally at rest.
i. Show that the kinetic energy of the $\alpha, E_{\alpha}$ particle is related to the $Q$-value by

$$
E_{\alpha}=\frac{M_{D}}{M_{\alpha}+M_{D}} Q
$$

where $M_{i}, \quad i \in\{\alpha, D\}$ are the masses of the $\alpha$ particle and the daughter nucleus respectively. Hint: Use momentum and energy conservation, and ignore relativistic effects.
ii. Compare the energy carried away by the $\alpha$ to that carried away by the recoiling

## Question 3

The semi empirical mass formula for the mass of a nucleus is given by

$$
M(A, Z)=Z m_{p}+(A-Z) m_{n}-a_{v} A+a_{s} A^{2 / 3}+a_{c} Z^{2} A^{-1 / 3}+a_{a}(A-2 Z)^{2}+\delta
$$

where the symbols have their usual meaning. Use $a_{v}=15.8, a_{s}=18.0, a_{c}=0.72$, $a_{a}=23.5$ and $\delta= \pm a_{p} A^{-2 / 3}$. or 0 with $a_{p}=33.5$. (Neglect the $\delta$ term)
(a) Show explicitly that for fixed $A, M(A, Z)$ has minimum value. Note that the actual value is not required.
(b) Use the mass formula to determine the most stable nucleus with $A=16$ and for $A=208$. Hint: Differentiate $\mathrm{M}(\mathrm{A}, \mathrm{Z})$ with respect to $Z$ while $A$ is fixed.
(c) Use the mass formula to determine the binding energy per nucleon for ${ }_{4}^{8} \mathrm{Be}$ and ${ }_{6}^{12} \mathrm{C}$. Are they stable?
(d) Experimentally ${ }_{4}^{8} \mathrm{Be}$ is known to be unstable, contrary to the result above. Assume ${ }_{4}^{8} \mathrm{Be}$ to be made out of two bound $\alpha$ particles: By calculating the $Q$-value of the processes ${ }_{4}^{8} \mathrm{Be} \rightarrow \alpha+\alpha$, and ${ }_{6}^{12} \mathrm{C} \rightarrow \alpha+\alpha+\alpha$ explain why this isotope of Beryllium is unstable. Note: Mass of Beryllium- 8 is 8.0053051 u .

## Question 4

(a) Consider the single particle shell model, in which the first few energy states are given by: $1 S ; 1 P_{3 / 2}, 1 P_{1 / 2} ; 1 D_{5 / 2}, 2 S, 1 D_{3 / 2} ; 1 F_{7 / 2}$, etc.
i. Which values of orbital angular momentum give odd parity and which give even parity?
ii. Use the shell model to predict the spin and parity of ${ }_{11}^{23} \mathrm{Na},{ }_{17}^{35} \mathrm{Cl}$ and ${ }_{20}^{41} \mathrm{Ca}$.
iii. Considering that protons and neutrons have intrinsic dipole moments $2.79 \mu_{N}$ and $-1.91 \mu_{N}$, use the shell model to predict the dipole moment of ${ }_{11}^{23} \mathrm{Na},{ }_{17}^{35} \mathrm{Cl}$ and ${ }_{20}^{41} \mathrm{Ca}$.
iv. Do you expect the shell model to give correct spin, parity and dipole moments predictions for ${ }_{11}^{23} \mathrm{Na},{ }_{17}^{35} \mathrm{Cl}$ and ${ }_{20}^{41} \mathrm{Ca}$ ? Explain.
(b) Specify any additional particles needed in the following weak reactions to assure the conservation of lepton number.
i. $e^{-}+\frac{A}{Z} X \rightarrow$ ?
ii. $\nu+n \rightarrow$ ?
iii. ${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+$ ?
iv. $\bar{\nu}_{e}+p \rightarrow$ ?

## Question 5

(a) Consider the mass fomula from question 3; We can use it to deduce a lower limit for the value of $Z$ for the fission process: Consider a nucleus $(A, Z)$ which undergoes fission into roughly two equal parts $2(A / 2, Z / 2)$. Note: Ignore the $a_{a}$ and $\delta$ terms which are a result of quantum effects.
i. Calculate the binding energy difference $\Delta B=B(A, Z)-2 B(A / 2, Z / 2)$ and show that

$$
\begin{equation*}
\Delta B=a_{s} A^{2 / 3}\left(1-2^{1 / 3}\right)+a_{c} \frac{Z^{2}}{A^{1 / 3}}\left(1-2^{-2 / 3}\right) \tag{8}
\end{equation*}
$$

ii. Substitute for $a_{2}$ and $a_{3}$ to obtain $\Delta B$ in terms of $A$ and $Z$.
iii. For what values of $Z$ is $\Delta B>0$ ? (That should give the lower limit for fission to occur.)
(b) The activity of a certain material decreases by a factor of 8 in a time interval of 30 days.
i. What is its half life?
ii. What is its mean life?
iii. What is its disintegration constant?

