UNIVERSITY OF SWAZILAND

146

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2016/2017

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

Useful Data:

1 unified mass unit (u) = $1.6605 \times 10^{-27} \ \mathrm{kg} = 931.5 \ \mathrm{MeV}/c^2$

Planck's constant $h = 6.63 \times 10^{-34}$ Js

Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$

Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Speed of light (vacuum) $c = 3.0 \times 10^8$ m/s

electron mass $m_e = 9.11 \times 10^{-31} \ {\rm kg} = 5.4858 \times 10^{-4} \ {\rm u} = 0.511 \ {\rm MeV}/c^2$

neutron mass $m_n = 1.6749 \times 10^{-27}$ kg = 1.008665 u = 939.573 MeV/ c^2

proton mass $m_p = 1.6726 \times 10^{-27} \text{ kg} = 1.0072765 \text{ u} = 938.280 \text{ MeV}/c^2$

 $1year = 3.156 \times 10^7 s$

nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2$ fm

fine structure constant, $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \frac{1}{137}$

 $\hbar c = 197 \text{ MeVfm}$

The table of nuclear properties is provided in the next page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
Н	1	1	1.007825	$1/2^{+}$	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^+$	13.8 s (β^{-})
В	5	11	11.009305	$3/2^{-}$	80.2%
С	6	12	12.00000	0+	99.89%
N	7	15	15.00109	$1/2^{-}$	0.366%
N	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s
0	8	16	15.994915	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	5/2+	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
P	15	$\frac{32}{30}$	29.978307	$\frac{1}{1^+}$	2.50 min
P	15	32	31.971725	1+	14.3 days
S	16	$\frac{32}{32}$	31.972071		95.02%
Cl	17	37	36.965903	$\frac{3}{2^{+}}$	24.23%
Ar	18	37	36.966776	$3/2^+$	35.0 days
K	19	37	36.973377	$\frac{3/2}{3/2^{-}}$	1.23 s
Ca	20	43	42.958766	7/2-	0.135%
Ca	20	47	46.954543	$\frac{1/2}{7/2^{-}}$	$4.54 \text{ days } (\beta^-)$
Sc	$\frac{20}{21}$	47	46.952409	$7/2^{-}$	$\begin{array}{c c} \hline 3.35 \text{ days } (\beta^-) \\ \hline \end{array}$
Fe	$\frac{21}{26}$	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Co	27	60	59.933820	5+	5.27 yrs
Ni	28	60	59.930788	$\frac{0}{0^{+}}$	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	$\frac{20}{28}$	65	64.930086	$\frac{5}{5/2^{-}}$	$2.52 \text{ hrs } (\beta^-)$
Cu	29	63	62.929599	$\frac{3/2}{3/2^{-}}$	<u>69.2%</u>
Cu	29	64	63.929800	1+	12.7 hrs
Cu	29	65	64.927793	$\frac{1}{3/2^+}$	30.8%
Zn	$\frac{29}{30}$	64	63.929145	$\frac{3/2}{0^+}$	48.6%
Ru	$\frac{30}{44}$	104	103.905424	$+ 0^+$	18.7%
Ru					
Pd	44	105	104.907744	$3/2^+$	$\frac{4.44 \text{ hrs } (\beta^{-})}{22.2\%}$
Cs	46	105	104.905079	$5/2^+$	
	55	137	136.907073	$7/2^+$	$30.2 \text{ yrs } (\beta^{-})$
Ba	56	137	136.905812	$\frac{3/2^+}{1/2^+}$	11.2%
Tl	81	203	202.972320	$\frac{1/2^{+}}{2}$	29.5%
Os	76	191	190.960920	9/2-	$\frac{15.4 \text{ days } (\beta^-)}{27.9\%}$
Ir	77	191	190.960584	$3/2^+$	37.3%
Au	79	199	198.968254	$3/2^+$	16.8%

(a) Calculate the approximate density of nuclear matter in kg/m^3 . Hint: Use the given (5)expression for the nuclear radius. (b) How does this compare with the atomic density? Hint: Assume an atomic radius (5)to be of the order of one Angstrom. (c) Certain radioactive nuclei emit α particles. Lets assume that α particles are emitted with kinetic energy 4 MeV. i. What is their velocity in m/s? (4)ii. Are relativistic effects negligible? (1)iii. What is the closest that such an α particle can get to the center of an Au (10)nucleus? Hint: Assume a head on collision that is prevented by the repulsive coulomb interaction?

150

(3)

(3)

(2)

(a) In this problem we compare the binding of 4 He with 3 He and 16 O with 15 N.

- i. Calculate the binding energy per nucleon for ${}^{4}\text{He}$
- ii. Calculate the binding energy of the last neutron in 4 He. How does it compare (4) with the binding energy per nucleon of this nucleus? Note: Mass of 3 He is 3.016029u.
- iii. Calculate the binding energy per nucleon for ¹⁶O
- iv. Calculate the binding energy of the last neutron in ¹⁶O. How does it compare (4) with the binding energy per nucleon of this nucleus? Note: Mass of ¹⁵O can be found page 3.
- v. What does this tell you about the stability of 4 He relative to 3 He, and of 16 O relative to 15 N?
- (b) Consider an α decay process in which the parent nucleus is originally at rest.
 - i. Show that the kinetic energy of the α , E_{α} particle is related to the Q-value by (6).

$$E_{\alpha} = \frac{M_D}{M_{\alpha} + M_D}Q,$$

where M_i , $i \in \{\alpha, D\}$ are the masses of the α particle and the daughter nucleus respectively. Hint: Use momentum and energy conservation, and ignore relativistic effects.

ii. Compare the energy carried away by the α to that carried away by the recoiling (3) nucleus at low values of A to that at high values of A.

The semi empirical mass formula for the mass of a nucleus is given by

$$M(A,Z) = Zm_p + (A-Z)m_n - a_vA + a_sA^{2/3} + a_cZ^2A^{-1/3} + a_a(A-2Z)^2 + \delta,$$

where the symbols have their usual meaning. Use $a_v = 15.8$, $a_s = 18.0$, $a_c = 0.72$, $a_a = 23.5$ and $\delta = \pm a_p A^{-2/3}$ or 0 with $a_p = 33.5$. (Neglect the δ term)

(a) Show explicitly that for fixed A, M(A, Z) has minimum value. Note that the actual (5) value is not required.

151

(6)

- (b) Use the mass formula to determine the most stable nucleus with A=16 and for (6) A=208. Hint: Differentiate M(A,Z) with respect to Z while A is fixed.
- (c) Use the mass formula to determine the binding energy per nucleon for ${}^{8}_{4}\text{Be}$ and ${}^{12}_{6}\text{C}$. (8) Are they stable?
- (d) Experimentally ${}^{8}_{4}$ Be is known to be unstable, contrary to the result above. Assume ${}^{8}_{4}$ Be to be made out of two bound α particles: By calculating the *Q*-value of the processes ${}^{8}_{4}$ Be $\rightarrow \alpha + \alpha$, and ${}^{12}_{6}$ C $\rightarrow \alpha + \alpha + \alpha$ explain why this isotope of Beryllium is unstable. Note: Mass of Beryllium-8 is 8.0053051u.

- (a) Consider the single particle shell model, in which the first few energy states are given by: 1S; $1P_{3/2}$, $1P_{1/2}$; $1D_{5/2}$, 2S, $1D_{3/2}$; $1F_{7/2}$, etc.
 - i. Which values of orbital angular momentum give odd parity and which give even (1) parity?

152

(6)

(3)

(3)

(3)

(3)

- ii. Use the shell model to predict the spin and parity of $^{23}_{11}$ Na, $^{35}_{17}$ Cl and $^{41}_{20}$ Ca.
- iii. Considering that protons and neutrons have intrinsic dipole moments $2.79\mu_N$ (3) and $-1.91\mu_N$, use the shell model to predict the dipole moment of ²³₁₁Na, ³⁵₁₇Cl and ⁴¹₂₀Ca.
- iv. Do you expect the shell model to give correct spin, parity and dipole moments (3) predictions for $^{23}_{11}$ Na, $^{35}_{17}$ Cl and $^{41}_{20}$ Ca? Explain.
- (b) Specify any additional particles needed in the following *weak* reactions to assure the conservation of lepton number.

i. $e^- +^A_Z X \rightarrow ?$

ii. $\nu + n \rightarrow ?$

iii. ${}^{A}_{Z}X \rightarrow^{A}_{Z-1}Y+?$

iv. $\bar{\nu}_e + p \rightarrow ?$

7

153

(4)

(3)

(3)

(3)

- (a) Consider the mass fomula from question 3; We can use it to deduce a lower limit for the value of Z for the fission process. Consider a nucleus (A,Z) which undergoes fission into roughly two equal parts 2(A/2,Z/2). Note: Ignore the a_a and δ terms which are a result of quantum effects.
 - i. Calculate the binding energy difference $\Delta B = B(A, Z) 2B(A/2, Z/2)$ and (8) show that

$$\Delta B = a_s A^{2/3} \left(1 - 2^{1/3} \right) + a_c \frac{Z^2}{A^{1/3}} \left(1 - 2^{-2/3} \right).$$

- ii. Substitute for a_2 and a_3 to obtain ΔB in terms of A and Z.
- iii. For what values of Z is $\Delta B > 0$? (That should give the lower limit for fission (4) to occur.)
- (b) The activity of a certain material decreases by a factor of 8 in a time interval of 30 days.

i. What is its half life?

ii. What is its mean life?

iii. What is its disintegration constant?