UNIVERSITY OF SWAZILAND

154

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2016/2017

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Useful Data:

1 unified mass unit $(u) = 1.6605 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}/c^2$ Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$ Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$ Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Speed of light (vacuum) $c = 3.0 \times 10^8 \text{ m/s}$ electron mass $m_e = 9.11 \times 10^{-31} \text{ kg} = 5.4858 \times 10^{-4} \text{ u} = 0.511 \text{ MeV}/c^2$ neutron mass $m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 939.573 \text{ MeV}/c^2$ proton mass $m_p = 1.6726 \times 10^{-27} \text{ kg} = 1.0072765 \text{ u} = 938.280 \text{ MeV}/c^2$ lyear = $3.156 \times 10^7 \text{ s}$ nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2 \text{ fm}$ fine structure constant, $\alpha = \frac{c^2}{4\pi\epsilon_0 \hbar c} = \frac{1}{137}$

 $\hbar c = 197 \text{ MeVfm}$

The table of nuclear properties is provided in the next page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
H	1	1	1.007825	$1/2^{+}$	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^+$	$13.8 \text{ s} (\beta^{-})$
В	5	11	11.009305	$3/2^{-}$	80.2%
С	6	12	12.00000	0+ -	99.89%
N	7	15	15.00109	$1/2^{-}$	0.366%
N	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s
0	8	16	$\overline{15.994915}$	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	5/2+	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
P	15	30	29.978307	1+	2.50 min
Р	15	32	31.971725	1+	14.3 days
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	$3/2^{+}$	24.23%
Ar	18	37	36.966776	$3/2^+$	35.0 days
K	19	37	36.973377	$3/2^{-}$	1.23 s
Ca	20	43	42.958766	7/2-	0.135%
Ca	20	47	46.954543	$7/2^{-}$	4.54 days (β^-)
Sc	21	47	46.952409	$7/2^{-}$	$3.35 \text{ days} (\beta^-)$
Fe	26	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Co	27	60	59.933820	5+	5.27 yrs
Ni	28	60	59.930788	0+	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	28	65	64.930086	$5/2^{-}$	$2.52 \text{ hrs } (\beta^{-})$
Cu	29	63	62.929599	3/2-	69.2%
Cu	29	64	63.929800	1+	12.7 hrs
Cu	29	65	64.927793	3/2+	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru	44	104	103.905424	0+	18.7%
Ru	44	105	104.907744	3/2+	4.44 hrs (β^{-})
Pd	46	105	104.905079	$\frac{1}{5/2^+}$	22.2%
Cs	55	137	136.907073	$\frac{7}{7/2^+}$	$30.2 \text{ yrs} (\beta^{-})$
Ba	56	137	136.905812	$\frac{1}{3/2^+}$	11.2%
Tl	81	203	202.972320	$1/2^+$	29.5%
Os	76	191	190.960920	9/2-	15.4 days (β^-)
Ir	77	191	190.960584	$\frac{'^{-}}{3/2^{+}}$	37.3%
Au	79	199	198.968254	$\frac{1}{3/2^+}$	16.8%

(9)

(4)

(a) Describe the experiment that was used to prove that the plum-pudding model of the atom is not correct. Highlight the results of the experiment and how those results disprove the model.

- (b) Before the discovery of the neutron, it was proposed that the penetrating radiation produced when beryllium was bombarded with α particles consisted of high-energy γ -rays produced in reactions such as $\alpha + {}^9 \text{Be} \rightarrow {}^{13}\text{C} + \gamma$
 - i. Calculate the *Q*-value for this reaction.
 - ii. If 5MeV α particles are incident on ⁹Be, calculate the energy of the carbon (12) nucleus and hence, determine the energy of the radiation assuming it is emitted as a single photon. (neglect the momentum of the gamma ray relative to the carbon nucleus)

Note: $m({}^{4}\text{He}) = 4.0026\text{u}, m({}^{9}\text{Be}) = 9.0122\text{u}, m({}^{13}\text{C}) = 13.0034\text{u}.$

The deuteron has total angular momentum J = 1 so that the ground state is a triplet state. The ground state is not a pure S state, i.e L = 0 state, and is formed by an admixture of the triplet S-state $({}^{3}S_{1})$ and the triplet D(L=2)-state $({}^{3}D_{1})$,

$$\Psi = \alpha \psi(^3S_1) + \beta \psi(^3D_1).$$

Here $|\alpha|^2 + |\beta|^2 = 1$

- (a) What is the value of the spin S for the deuteron?
- (b) Explain why the P-state, i.e L = 1 state is not compatible with the triplet S-state. (3)
- (c) Given that the magnetic moment of deuteron is given by $\mu_D = \mu_p + \mu_n + \frac{1}{2}\mu_N \mathbf{L} = (8)$ $g\mu_N \mathbf{J}$, show that

$$- g\mathbf{J} = \frac{1}{2}(g_p + g_n)\mathbf{S} + \frac{1}{2}(g_p - g_n)(\mathbf{s}_p - \mathbf{s}_n) + \frac{1}{2}\mathbf{L},$$

where $\mu_i = g_i \mu_N \mathbf{s}_i$, $\mathbf{S} = \mathbf{s}_p + \mathbf{s}_n$.

(d) Show that $\langle \mathbf{s}_p - \mathbf{s}_n \rangle = 0$ in triplet states. Hence show that

$$g\mathbf{J} = \bar{g}\mathbf{S} + \frac{1}{2}\mathbf{L},$$

where $\bar{g} = \frac{1}{2}(g_p + g_n)$.

(e) Show that $g\mathbf{J}^2 = \bar{g}\mathbf{S}\cdot\mathbf{J} + \frac{1}{2}\mathbf{L}\cdot\mathbf{J}$.

(4)

(8)

(2)

159

- (a) A by-product of some fission reactors is ²³⁹Pu, which is an α -emitter with a half life of 24120 years. Consider 1kg of ²³⁹Pu at t = 0, [Atomic mass of ²³⁹Pu = 239.052163u.
 - i. What is the number of ²³⁹Pu nuclei at t = 0? (2)
 - ii. What is the initial activity?

(2)

- iii. For how long would you need to store Plutonium until it has decayed to a safe (3) activity level of 0.1 Bq? Give your answer in years.
- (b) Radionuclides are useful sources of small amounts of energy in space vehicles, remote (5) communication stations, heart pacemakers, etc. Calculate the initial power available from a gram of ²¹⁰Po, an α-emitter with an energy of 5.30 MeV and a half life of 138 days. Give your answer in Watts. [Atomic mass of ²¹⁰₈₄Po = 209.982848u]
- (c) In stars that are slightly more massive than the Sun, hydrogen burning is carried (4) out mainly by the CNO cycle, whose first step is p +¹²₆ C →¹³₇ N + γ. Estimate the energy of the γ, assuming the two initial nuclei are essentially at rest. Justify any simplifying assumptions you make. [Atomic masses: ¹₁H = 1.007825u, ¹²₆C = 12.00000u, ¹³₇N = 13.005739u]
- (d) Consider the nuclear fission reaction $n + {}^{235}_{92} \text{U} \rightarrow {}^{141}_{56} \text{Ba} + {}^{92}_{36} \text{Kr} + 3n$.
 - i. Calculate the energy released (in MeV) in the reaction. [Atomic masses: ${}^{235}_{92}U = (4)$ 235.043915u, ${}^{92}_{36}Kr = 91.8973u$, ${}^{141}_{56}Ba = 140.9139u$ and neutron mass is 1.008665u]
 - ii. You wish to run a 1000 MW power reactor using $^{235}_{92}$ U fission. How much $^{235}_{92}$ U (5) is required for one day's operation?

- (a) Classify the following β decays as allowed, first forbidden, Fermi or Gamow-Teller (15)transitions:
 - 1. ${}^{3}\text{H} \rightarrow {}^{3}\text{He}$
 - 2. ${}^{14}O(0^+) \rightarrow {}^{14}N^*(0^+)$
 - 3. ${}^{47}_{21}\mathrm{Sc}({}^{7-}_2) \rightarrow {}^{47}_{22}\mathrm{Ti}^*({}^{7-}_2)$ 4. ${}^{36}_{16}\mathrm{S}(0^+) \rightarrow {}^{36}_{17}\mathrm{Cl}(2^-)$

 - 5. ${}^{152}_{63}\text{Eu}^*(0^-) \rightarrow {}^{152}_{62}\text{Sm}(0^+)$
- (b) A nucleus in an excited state will most likely de-excite through photon emmission, (4)i.e gamma decay. Describe two other processes that lead to de-excitation of excited nuclei.
- (c) Show that in the de-excitation of a nucleus via gamma radiation the energy of a (6)gamma photon, E_{γ} , is given

$$E_{\gamma} = E\left(1 - \frac{E}{2Mc^2}\right),$$

where E is the energy of the excited state and M is the mass of the nucleus.

	Question 5	61			
(a)	Given that the mass attenuation coefficients for a bone and tissue are $\mu_m(box 0.32 \text{ and } \mu_m(tissue) = 0.2$ for 60keV γ rays. Consider a piece of bone ember inside the tissue. Let the intensity of radiation that passes through the tissue and the intensity of the radiation passing through tissue and bone be I_2 . Calc the thickness of the bone assuming that $I_1/I_2 = 2$.	ne) = (8) edded be I_1 culate			
(b)	Discuss three modes by which a photon can interact with matter.	(6)			
(c)	Discuss the essential features of the strong nuclear force.	(4)			
(d)	(d) Show that the decay $n \to p + e^-$ cannot conserve angular momentum.				
(e)	Write short notes on the following.				
	i. Internal conversion	(2)			
	ii. Bremsstrahlung	(2)			

•