UNIVERSITY OF SWAZILAND

.

162

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2016/2017

TITLE OF PAPER: STATISTICAL PHYSICS & THERMODYNAMICS

COURSE NUMBER: P 461

TIME ALLOWED : THREE HOURS

ANSWER ANY **FOUR** OF THE FIVE QUESTIONS . ALL QUESTIONS CARRY EQUAL MARKS.

APPENDICES 1 AND 2 CONTAIN DEFINITE INTEGRALS AND PHYSICAL CONSTANTS.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

<u>Quest</u>	<u>ion one</u>		163
(a)	(i)	Explain briefly what is meant by statistical weight of a system of p	articles. (3 marks)
	(ii)	What is the significance of <i>statistical weight</i> as regards the propert system?	ies of the (2 marks)
(b)	(i)	Four coins marked a, b, c, and d are tossed. If the number of heads number of tails (T) obtained in a toss define a macrostate.	(H) and the
-		 (a) Write down all the possible macrostates and (b) Calculate the number of microstates corresponding to each 	(2 marks)
		of the above macrostates.	(4 marks)
	(ii)	Assuming the number of coins is increased from 4 to 8, what woul maximum number of microstates that can be obtained in a toss.	d be the
			(2 marks)
		Hint: $W = \frac{N!}{\prod_{s} n_{s}!}$	
(c)	(i)	What is meant by <i>degeneracy</i> of an energy level?	(2 marks)
	(ii)	Find the degeneracy of an energy level having energy $E = kn^2$, k be a constant and $n^2 = n_x^2 + n_y^2 + n_z^2 = 14$.	eing
		n_{x} , n_{y} , n_{z} are quantum numbers corresponding to a quantum state.	
			(3 marks)
(d)	(i)	Define density of states of a system of particles.	(2 marks)
	(ii)	Calculate the <i>density of states</i> at an energy level of 2.06 eV for a sy fermions having volume 10^{-4} m ³ .	vstem of (5 marks)

2

.

Question Two

(a) The Maxwell-Boltzmann distribution function for a system of classical particles in thermal equilibrium is

 $n_s = g_s \exp(\alpha + \beta \varepsilon_s)$

where the symbols have their usual meanings.

A classical non-degenerate system has 2000 particles arranged in 3 energy levels having energies 1 unit, 2 units and 3 units. The total energy of the system is 2600 units.

- (i) Use the above distribution function to find the values of α and β for the system. (9 marks)
- (ii) Use these values and the distribution function to find the occupation of the energy levels. (3 marks)
- (iii) Verify your results numerically by finding the total number and total energy of the system. (2 marks)
- (b) The differential form of Maxwell-Boltzmann distribution function in terms of speed is

$$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} v^2 dv$$

Use this equation to obtain

(i) the mean speed and

(6 marks)

(ii) the most probable speed of the molecules in a classical gas.

(5 marks)

164

Appendix 1

Various definite integrals.

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2}\sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{3} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{2} dx = \frac{1}{4}\sqrt{\frac{\pi}{a^{3}}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{4} dx = \frac{3}{8a^{2}} \left(\frac{\pi}{a}\right)^{1/2}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{5} dx = \frac{1}{a^{3}}$$

$$\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$\int_{0}^{\infty} x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$$

$$\int_{0}^{\infty} \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}} dx = \frac{4\pi^{4}}{15}$$

$$\int_{0}^{\infty} \frac{x^{1/2}}{e^{x} - 1} dx = \frac{2.61\pi^{1/2}}{2}$$

•

165

Appendix 2

166

Physical Constants.

Quantity

symbol

value

Speed of light	С		
Plank's constant	h		
Boltzmann constant	k		
Electronic charge	е		
Mass of electron	m_{e}		
Mass of proton	m,		
Gas constant	Ŕ		
Avogadro's number	N_{A}		
Bohr magneton	$\mu_{\scriptscriptstyle \mathrm{B}}$		
Permeability of free space	μ_0		
Stefan- Boltzmann constant	σ		
Atmospheric pressure			
Mass of ${}_{2}^{4}$ He atom			
Mass of ${}_{2}^{3}$ He atom			
Volume of an ideal gas at STP			

 $\begin{array}{l} 3.00 \ x \ 10^8 \ ms^{-1} \\ 6.63 \ x \ 10^{-34} \ J.s \\ 1.38 \ x \ 10^{-23} \ JK^{-1} \\ 1.61 \ x \ 10^{-19} \ C \\ 9.11 \ x \ 10^{-31} \ kg \\ 1.67 \ x \ 10^{-27} \ kg \\ 8.31 \ J \ mol^{-1} \ K^{-1} \\ 6.02 \ x \ 10^{23} \\ 9.27 \ x \ 10^{-24} \ JT^{-1} \\ 4\pi \ x \ 10^{-7} \ Hm^{-1} \\ 5.67 \ x \ 10^{-8} \ Wm^{-2} \ K^{-4} \\ 1.01 \ x \ 10^{5} \ Nm^{-2} \\ 6.65 \ x \ 10^{-27} \ kg \\ 5.11 \ x \ 10^{-27} \ kg \\ 22.4 \ L \ mol^{-1} \end{array}$