UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2016/2017

TITLE OF THE PAPER: COMPUTATIONAL METHODS-II

COURSE NUMBER: P482

TIME ALLOWED:

SECTION	A:	1.5	HOURS
SECTION	B:	1.5	HOURS

INSTRUCTIONS:

THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.
- You may proceed to do Section B only after you have submitted your answer book for Section A

Answer all the questions from section A and all the questions from section B. Marks for different sections of each question are shown in the right hand margin.

THE PAPER HAS 6 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

1

Section A

Question 1

2

(a) Using the information about precedence/associativity of operators in Fortran evaluate each of the following F95 expressions

- (i) 2 * * 3 * 4 + 2
- (ii) 6/5 + 1
- (iii) (9 3 * 2)/2
 - (iv) 2.3 * (3/2) 5
 - (v) 10/(1.0 * 3) 10/3

[5 marks]

- (b) Compute the period of the sequence $\{x_n\}$ defined below. Give two reasons why it would make a bad random number generator.
 - $x_n = (x_{n-1} + x_n n 2) \mod 8 \tag{1}$
 - $x_0 = 3 \tag{2}$
 - $x_1 = 7 \tag{3}$
 - (4)

[5 marks]

Question 2

a) A sleep-deprived P482 student (working late on an assignment) is trying to compute the kinetic energy $p^2/(2m)$ of a particle of mass m = 0.5 and momentum p = 4. His four attempts yield to the following Fortran snippets. In each case, determine the value assigned to kin_en:

real*8:: m,v, kin_en

$$p = 4.d0$$

i) kin_en =(1/2)* m* p* p

ii) kin_en =p**2/2* m

iii) kin_en =0.5d0 p* p /m iv) kin_en =0.d0* p* p/ m

[4 marks]

169

b) A quantum particle living in one dimension is characterized by its wavefunction $\psi(x)$. If the particle interacts with nothing else and is subject to no confining potential, then it is free and its energy is given

$$E = -\frac{1}{\psi(x)} \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2}$$

i) Show that a finite difference approximation for the kinetic energy is as follows:

$$E = -\frac{\hbar^2}{2ma^2}(\psi_{i-1} + \psi_{i+1} - 2\psi_i).$$

where $\psi_i = \psi(x_i)$ at discrete points $x_i = i \cdot a$. for integer i

[4 marks]

ii) In what parameter regime is the continuum result recovered?

[2 marks]

Question 3

Consider a one-dimensional random walker on a linear lattice. The walker starts at the origin and moves non-stop for M steps.

a) Write an algorithm to simulate the movement of the random walker. Assume the random walker takes a unit step at each instant and that he/she moves to the left or right with equal probabilities.

4 marks

b) Show that a basic random walk can be rewritten as a continuum diffusion equation by taking the limit in which the lattice spacing l and the time-step τ to go to zero.

[6 marks]

a) Write a Fortran 95 function for

$$\operatorname{sinc}(x) \equiv \frac{\sin x}{x}$$

Make sure that your function handles x = 0 correctly.

[4 marks]

170

b) A magnet can be modelled by a set of N spins interacting classically via an interaction energy

$$E_i = -J\sum_j S_i S_j$$

where the Ising spin at site *i* can take two values $s_i = +1$ (\uparrow) or $s_i = -1$ (\downarrow) and the sum is over the *j* nearest neighbors of *i*. Consider the following one-dimensional lattice with N = 20 spins:

Compute the magnetization $m = \sum_{i=1}^{N} S_i/N$ and the average energy $\langle E \rangle = \sum_{i=1}^{N} E_i/N$ of the system, assuming that the left-end and the rightend spins are connected, i.e., periodic boundary conditions.

[6 marks]

Section B

The answers to this question must include the computer code and output, in addition to any writing that might be needed.

Question 5

Ferromagnetism:- The evolution of the magnetization m(x,t) of a material very close to the demagnetization temperature (T_c) , where the ferromagnetism of the material is destroy by heat, can be described by the following model

$$rac{\partial m(x)}{\partial t} = rac{\partial^2 m(x)}{\partial x^2} + rm(x) - m^3(x)$$

in one dimension. Here r is a temperature dependent parameter. The spatial average magnetization is nonzero below T_c and vanishes above T_c . The corresponding difference formula the above dynamics equation is given as

$$m_i^{n+1} = m_i^n + \frac{\Delta t}{(\Delta x)^2} \cdot (m_{i+1}^n + m_{i-1}^n - 2m_i^n) + \Delta t [rm_i^n - (m_i^n)^3]$$
(5)

where $m_i^n = m(i \cdot \Delta x, n \cdot \Delta t)$. The code *ferroM.f*95 implements the above difference formula to determine the dynamics of a system with r = 0.5 with random initial conditions and periodic boundary conditions.

- (i) (10 marks) Rerun the code with a different seed of the random number generator. Plot the configuration of the magnetization m(x, t = 0), i.e., m_i^0 for i = 1 to 100.
- (ii) (20 marks) Using the program calculate how the magnetization of the system evolves with time t_n . Create plots of the magnetization $m_i \equiv m(x_i)$ for i = 1...100 at $t_0 = 0$, t_{700} and t_{5000} . Superimposed these results into one graph use proper labels to differentiate each case.

(iii) (30 marks) Modify your code in order to compute the average magnetization of the system at each given time step: $\bar{m}(t_n) = \frac{1}{100} \sum_{i=1}^{100} m(x_i, t_n)$. Plot \bar{m} vs t_n , for n =1 to 5000 for two cases: when r = -0.5 and r = 0.5. From your results can you conclude that negative r corresponds to temperatures below the demagnetization temperature? Explain.

3

171