UNIVESITY OF SWAZILAND
 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

Main Examination 2016/2017
COURSE NAME: Thermodynamics/Thermofluids
COURSE CODE: PHY242/EEE202
TIME ALLOWED: 3 hours

ANSWER ANY FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL
MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a). A heat engine absorbs 360 J of energy and performs 25 J of work in each cycle. find
(i) The efficiency of the engine. [2 marks]
(ii) The energy expelled to the cold reservoir in each cycle. [2 marks]
(b). A particular engine has a power output of 5.0 kW and an efficiency of 25.0%. Assuming the engine expels 8000 J of energy in each cycle, find
(i) The energy absorbed in each cycle. [3 marks]
(ii) The time for each cycle. [3 marks]
(c). The highest thermal efficiency of a certain engine is 30%. If the engine uses the atmosphere which has temperature of 300 K as its cold reservoir, what is the temperature of its hot reservoir? [4 marks]
(d). Suppose that a 1.0 kg of water at $0{ }^{\circ} \mathrm{C}$ is mixed with equal mass of water at $100^{\circ} \mathrm{C}$. After equilibrium is reached, the mixture has a uniform temperature of $50^{\circ} \mathrm{C}$. What is the change in entropy, ΔS, of the system? [4 marks]
(e). State Carnot's thoerem. [2 marks]

Question 2

(a). Define a universe in thermodynamics. [1 marks]
(b). What is the difference between heat and temperature in thermodynamics? [2 marks]
(c). What is the specific heat capacity of a substance. [2 marks]
(d). Define the following terms;
(i) Isochoric (Isometric) process. [2 marks]
(ii) Adiabatic process. [2 marks]
(iii) Closed system. [2 marks]
(e). A 1.0 mol sample of an ideal gas is kept at $0.0^{\circ} \mathrm{C}$ during an expansion from 3.0ℓ to 10.0ℓ.
(i) How much work is done during the gas expansion? [2 marks]
(ii) How much energy transfer by heat occurs with the sarroundings in this process? [3 marks]
(iii) If the gas is returned to the original volume by means of an isobaric process, how much work is done by the gas? [2 marks]
(f). What is the difference between intensive and extensive properties of a thermodynamic system? [2 marks]

Question 3

(a). A steel railroad track has a length of 30.0 m when the temperature is $0^{\circ} \mathrm{C}$. What is the length when its temperature is $40^{\circ} \mathrm{C}$? [2 marks]
(b). An ideal gas occupies a volume of $100 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$ and 100 Pa . find the number of moles of gas in the container. [2 marks]
(c). A spray containing a propellant gas at twice the atmospheric pressure (202 kPa) and having a volume of $125 \mathrm{~cm}^{3}$ is at $22^{\circ} \mathrm{C}$. It is then tossed into an open fire. When the temperature of the gas in the can reaches $195^{\circ} \mathrm{C}$, what is the pressure inside the can? (Assume any change in volume of the can is negligible). [3 marks]
(d). Air, at $20^{\circ} \mathrm{C}$ and 1.0 atm pressure, in the cylinder of a diesel engine is compressed from a volume of $800.0 \mathrm{~cm}^{3}$ to a volume of $60.0 \mathrm{~cm}^{3}$. Assume air behaves as an ideal gas with the ratio $\frac{C_{p}}{C v}=1.40$ and the compression is adiabatic. Find the final pressure and temperature of the air. [4 marks]
(e). One mole of an ideal gas is expanded isothermally and reversibly at $\mathrm{T}=300 \mathrm{~K}$ from 10 atm to 1 atm . Calculate the work done. [4 marks]
(f). Consider a 3 m high, 5 m wide, and 0.3 m thick wall whose thermal conductivity is $\mathrm{k}=0.9 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$ (Fig. 1). On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be $16^{\circ} \mathrm{C}$ and $2^{\circ} \mathrm{C}$, respectively. Determine the rate of heat loss, \dot{Q}, through the wall on that day. [5 marks]

Figure 1:
(a). One mole of ideal gas with constant heat capacity C_{v} is placed inside a cylinder. The cylinder is thermally insulated from the environment and inside the cylinder there is a piston which can move without friction along the vertical axis. Pressure, P_{1} is applied to the piston. At some point, P_{1} is abruptly changed to P_{2} (e.g. by adding or removing a weight from the piston). As a result, the gas volume changes adiabatically.
(i) Show that $C_{p}-C_{v}=R$.
(ii) Show that the volume, V_{2}, can be expressed as $V_{2}=\frac{R T_{2}}{P_{2}}$. Show that after equilibrium has been reached, the temperature, T_{2}, can be expressed as $T_{2}=\frac{C_{v} P_{1}+P_{2} V_{2}}{C_{p}}$.
[8 marks]
(Hint: Use first law of thermodynamics $\Delta E_{\text {int }}=\Delta Q-W, W=$ $P \Delta V$, and $\left.\Delta E_{i n t}=n C_{v} \Delta T\right)$
(b). After thermodynamic equilibrium has been established in (a), above, the pressure is abruptly reset to its original value P_{1}. Compute final values of the temperature T_{f} and the volume V_{f} after the thermodynamic equilibrium has been reached again. Use the first law of thermodynamics and the adiabatic equation to compute the difference in temperatures $\left(T_{f}-T_{1}\right)$.
[8 marks]

Question 5

(a). Show that while the slope of the fusion curve in a P-T diagram for substances that contract on freezing is positive, the slope of the fusion curve of the substances that expand on freezing is negative. [5 marks]
(b). Sketch a P-T diagram for both cases in (a) above. Designate the regions of the vapour, liquid and solid phases, the phase transition curves, the triple and the critical point. [5 marks]
(c). The latent heat of fusion of water at $0^{\circ} \mathrm{C}$ and 1 atm is $l_{12}=3.34 \times 10^{5}$ J / kg. The volumes per gram in the solid and liquid phase are $v_{1}=1.09$ $\mathrm{cm}^{3} / \mathrm{g}, v_{2}=1.00 \mathrm{~cm}^{3} / \mathrm{g}$ respectively. Calculate the slope of the fusion curve (in atm/K) at $0^{\circ} \mathrm{C}$. [5 marks]
(d). Assuming that the latent heat of fusion is approximately constant, and that the fusion curve in a P-T diagram is linear, calculate the pressure required to decrease the melting point of ice by $7.5^{\circ} \mathrm{C}$. [5 marks]

Question 6

(a). An engine, with an ideal gas as the working substance, operates in the reversible cycle, $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, shown in figure 2 . Assume that P_{1}, V_{1} and P_{3} as well as heat capacity C_{v} are known.

Figure 2:
(i) Calculate the work, the heat flow and the internal energy change for each leg of the cycle. [10 marks]
(ii) Calculate the entropy change for each leg of the cycle. What is the net change of the entropy? Why?[4 marks]
(iii) Define the efficiency of an engine. [2 marks]
(iv) Show that in our case the efficiency is given by

$$
\eta=1-\frac{1}{\gamma}\left(\frac{1-\frac{P_{3}}{P_{1}}}{1-\frac{V_{1}}{V_{3}}}\right)
$$

[4 marks]
where $\gamma=\frac{C_{p}}{C_{v}}$.

Appendix

Some usefull information

- $\left.\frac{d P}{d T}\right|_{1 \rightarrow 2}=\frac{l_{12}}{T\left(v_{2}-v_{1}\right)}$
- $d U(S, V)=T d S-P d V$
- $F=U-T S$
- $G=U-T S+P V$
- $H=U+P V$
- $P V=n R T$
- $P V^{\gamma}=$ const.
- $R=8.31 \mathrm{~J} / \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. universal gas constant
- $k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$. Boltzmann constant
- $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$
- Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
- Linear expansion coefficient for steel, $\alpha=11 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$,

