FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2016/2017

TITLE OF PAPER : MATHEMATICAL METHODS FOR PHYSICISTS

COURSE NUMBER : P272/PHY271

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS. MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) Given an arbitrary scalar and continuous function in cylindrical coordinates as $f(\rho, \phi, z)$, prove that $\vec{\nabla} \times(\vec{\nabla} f(\rho, \phi, z)) \equiv 0$.
(7 marks)
(b) Given $\vec{F}=\vec{e}_{x}\left(y^{2}\right)+\vec{e}_{y}(2 x z)+\vec{e}_{z}\left(3 x^{2}\right)$ in Cartesian coordinates, find the value of the following line integral

$$
\int_{P_{1}, L}^{P_{2}} \vec{F} \cdot d \vec{l} \text { if } \mathrm{P}_{1}:(3,0,2), \mathrm{P}_{2}:(6,27,2) \text { and }
$$

(i) L : a straight line from P_{1} to P_{2} on $\mathrm{z}=2$ plane.
(ii) L : a parabolic path described by $y=x^{2}-9$ from P_{1} to P_{2} on $\mathrm{z}=2$ plane. Compare this answer with that obtained in (b)(i) and comment on whether the given \vec{F} is a conservative vector field or not.
(7 marks)
(iii) Find $\vec{\nabla} \times \vec{F}$. Does this result agree with the comment you made in (b)(ii)?
(4 marks)

Question two

Given $\vec{F}=\vec{e}_{r}\left(r^{3} \cos (\theta)\right)+\vec{e}_{\theta}\left(2 r^{3} \sin (\phi)\right)+\vec{e}_{\phi}\left(3 r^{3} \sin (\theta)\right)$ in spherical coordinates,
(a) find the value of $\oint \vec{F} \bullet d \vec{l}$ if L is the circular closed loop of radius a on $\theta=\frac{\pi}{2}$ plane in counter clockwise sense as shown in the diagram below

i.e.,
$L:\left(r=a, \theta=\frac{\pi}{2}, 0 \leq \phi \leq 2 \pi \quad \& \quad d \vec{l}=+\vec{e}_{\phi} r \sin (\theta) d \phi \xrightarrow{r=a \& \theta=\frac{\pi}{2}} \vec{e}_{\phi} a d \phi\right)$
(7 marks)
(b) (i) find $\vec{\nabla} \times \vec{F}$,
(7 marks)
(ii) then evaluate the value of $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s}$ where S is bounded by L given in (a), i.e.,

$$
\mathrm{S}:\left(\begin{array}{r}
0 \leq r \leq a, \theta=\frac{\pi}{2}, 0 \leq \phi \leq 2 \pi \quad \& \quad d \vec{s}=-\vec{e}_{\theta} r \sin (\theta) d r d \phi \\
\theta=\frac{\pi}{2} \\
-\vec{e}_{\theta} r d r d \phi
\end{array}\right)
$$

Compare this value with that obtained in (a) and make a brief comment.
(11 marks)

Given the following non-homogeneous differential equation as $\frac{d^{2} x(t)}{d t^{2}}+4 x(t)=f(t)$, where $f(t)$ is a periodic rectangular barrier shape driving force of period 10 , i.e., $f(t)=f(t+10)=f(t+20)=\cdots \cdots$., and its first period description is $f(t)=\left\{\begin{array}{lll}k & \text { for } & 0 \leq t \leq 5 \\ 0 & \text { for } & 5 \leq t \leq 10\end{array} \quad\right.$ where k is a constant,
(a) find the Fourier series expansion of $f(t)$ and show that $f(t)=\frac{k}{2}+\sum_{n=1}^{\infty} \frac{k(1-\cos (n \pi))}{n \pi} \sin \left(\frac{n \pi t}{5}\right) \quad \cdots \cdots$ (1)
(10 marks)
(b) find the particular solution of the given non-homogeneous differential equation $x_{p}(t)$ and show that
$x_{p}(t)=\frac{k}{8}+\sum_{n=1}^{\infty}\left\{\frac{k(1-\cos (n \pi))}{n \pi\left(-\frac{n^{2} \pi^{2}}{25}+4\right)} \sin \left(\frac{n \pi t}{5}\right)\right\}$
(12 marks)
(c) for the homogeneous part of the given non-homogeneous differential equation, i.e., $\frac{d^{2} x(t)}{d t^{2}}+4 x(t)=0$, set $\quad x(t)=e^{\alpha t}$ and find the appropriate values of α and thus write down its general solution $x_{h}(t)$. Then write down the general solution of the given non-homogeneous differential equation $x_{g}(t)$.
(a) Given the following 2-D Laplace equation in cylindrical coordinates as $\nabla^{2} f(\rho, \phi)=0=\frac{\partial^{2} f(\rho, \phi)}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial f(\rho, \phi)}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} f(\rho, \phi)}{\partial \phi^{2}}$,
(i) set $f(\rho, \phi)=F(\rho) G(\phi)$ and use separation variable scheme to separate the above partial differential equation into the following two ordinary differential equations.
$\left\{\begin{array}{l}\rho^{2} \frac{d^{2}(F(\rho))}{d \rho^{2}}+\rho \frac{d(F(\rho))}{d \rho}=k F(\rho) \\ \frac{d^{2}(G(\phi))}{d \phi^{2}}=-k G(\phi)\end{array}\right.$
where k is a separation constant
(ii) From eq.(2), explain briefly why the appropriate values for k are m^{2} where $m=0,1,2,3, \cdots \cdots$.
(2 marks)
(b) If $m=2$ thus eq.(2) in (a)(i) becomes $\frac{d^{2}(G(\phi))}{d \phi^{2}}+4 G(\phi)=0$.

Set $G(\phi)=\sum_{n=0}^{\infty} a_{n} \phi^{n+s} \quad \& \quad a_{0} \neq 0$ and utilize the power series method,
(i) write down its indicial equations and show that $s=0$ or 1 and $a_{1}=0$,
(7 marks)
(ii) For $s=0$ independent solution, named as $G_{1}(\phi)$, write down its recurrence relation. Set $a_{0}=1$ and use the recurrence relation to generate $G_{1}(\phi)$ in power series form truncated up to a_{6} term.
(7 marks)
(iii) Show that $G_{1}(\phi)$ is linearly dependent on the two closed form independent solutions of eq.(2) which are $\sin (2 \phi) \quad \& \cos (2 \phi)$.
(4 marks)
(Hint : $\left\{\begin{array}{l}\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+O\left(x^{9}\right) \\ \cos (x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+O\left(x^{8}\right)\end{array}\right)$

Two simple harmonic oscillators are joined by a spring with a spring constant k_{12} as shown in the diagram below :

The equations of motion for this coupled oscillator system ignoring friction are given as
$\left\{\begin{array}{l}m_{1} \frac{d^{2} x_{1}(t)}{d t^{2}}=-\left(k_{1}+k_{12}\right) x_{1}(t)+k_{12} x_{2}(t) \\ m_{2} \frac{d^{2} x_{2}(t)}{d t^{2}}=k_{12} x_{1}(t)-\left(k_{2}+k_{12}\right) x_{2}(t)\end{array}\right.$
where $x_{1} \& x_{2}$ are horizontal displacements of $m_{1} \& m_{2}$ measured from their respective resting positions.
If given $m_{1}=1 \mathrm{~kg}, m_{2}=3 \mathrm{~kg}, k_{1}=2 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=6 \frac{\mathrm{~N}}{\mathrm{~m}} \& k_{12}=3 \frac{\mathrm{~N}}{\mathrm{~m}}$,
(a) Set $x_{1}(t)=X_{1} e^{i \omega t} \quad \& \quad x_{2}(t)=X_{2} e^{i \omega t}$, then the above given equations can be deduced to the following matrix equation $A X=-\omega^{2} X \quad$ where

$$
A=\left(\begin{array}{cc}
-5 & 3 \\
1 & -3
\end{array}\right) \quad \& \quad X=\binom{X_{1}}{X_{2}}
$$

(b) find the eigenfrequencies ω of the given coupled system ,
(c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b),
(d) find the normal coordinates of the given coupled system,
(e) write down the general solutions for $x_{1}(t) \& x_{2}(t)$.

Useful informations

The transformations between rectangular and spherical coordinate systems are :

$$
\left\{\begin{array}{c}
x=r \sin (\theta) \cos (\phi) \\
y=r \sin (\theta) \sin (\phi) \quad \& \\
z=r \cos (\theta)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right.
$$

The transformations between rectangular and cylindrical coordinate systems are :

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{aligned} \quad \begin{aligned}
& \vec{\nabla} \cdot \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
& \vec{\nabla} \times \vec{F}=\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right)+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and $\left(u_{1}, u_{2}, u_{3}\right) \quad$ represents $\quad(x, y, z) \quad$ for rectangular coordinate system represents $(\rho, \phi, z) \quad$ for cylindrical coordinate system represents $(r, \theta, \phi) \quad$ for spherical coordinate system $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ represents $\quad\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right) \quad$ for rectangular coordinate system represents $\quad\left(\vec{e}_{p}, \vec{e}_{\phi}, \vec{e}_{z}\right) \quad$ for cylindrical coordinate system represents $\quad\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right) \quad$ for spherical coordinate system $\left(h_{1}, h_{2}, h_{3}\right)$ represents $(1,1,1) \quad$ for rectangular coordinate system represents $(1, \rho, 1) \quad$ for cylindrical coordinate system represents $\quad(1, r, r \sin (\theta)) \quad$ for spherical coordinate system
$f(t)=f(t+2 L)=f(t+4 L)=\cdots=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi t}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi t}{L}\right) \quad$ where $a_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(t) d t, a_{n}=\frac{1}{L} \int_{0}^{2 L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \& b_{n}=\frac{1}{L} \int_{0}^{2 L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t$ for $n=1,2,3, \cdots$
$\int(t \sin (k t)) d t=-\frac{t \cos (k t)}{k}+\frac{\sin (k t)}{k^{2}}$
$\int(t \cos (k t)) d t=\frac{t \sin (k t)}{k}+\frac{\cos (k t)}{k^{2}}$

