UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2016/2017

TITLE OF PAPER : MATHEMATICAL METHODS FOR PHYSICISTS

COURSE NUMBER : P272/PHY271

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS EIGHT PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

Given $\bar{F}=\bar{e}_{\rho}\left(4 \rho^{3}\right)+\vec{e}_{\phi}\left(2 \rho^{3} \cos \phi\right)+\vec{e}_{z}\left(\rho z^{2}\right)$ in cylindrical coordinates,
(a) find the value of $\oint_{S} \cdot d \vec{S}$ if S is the closed surface enclosing the cylindrical tube of cross-sectional radius a and tube height h, i.e., $S=S_{1}+S_{2}+S_{3}$ where
$S_{I}:\left(z=0,0 \leq \rho \leq a, 0 \leq \phi \leq 2 \pi \quad \& \quad d \vec{s}=-\bar{e}_{z} \rho d \rho d \phi\right)$
$S_{2}:\left(z=h, 0 \leq \rho \leq a, 0 \leq \phi \leq 2 \pi \quad \& \quad d \bar{s}=+\bar{e}_{z} \rho d \rho d \phi\right)$
$S_{3}:\left(\rho=a, 0 \leq \phi \leq 2 \pi, 0 \leq z \leq h \quad \& \quad d \vec{s}=\vec{e}_{\rho} \rho d \phi d z \xrightarrow{\rho=a} \vec{e}_{\rho} a d \phi d z\right)$
The chosen closed surface S is shown in the diagram below :

(12 marks)
(b) (i) find $\bar{\nabla} \cdot \bar{F}$,
(4 marks)
(ii) then evaluate the value of $\iiint(\vec{\nabla} \bullet \vec{F}) d v$ where V is bounded by S given in(a), i.e., $V: 0 \leq \rho \leq a, 0 \leq \phi \leq 2 \pi, 0 \leq z \leq h \quad \& \quad d v=\rho d \rho d \phi d z$.

Compare this value with that obtained in (a) and make a brief comment.

Question two

Given the following non-homogeneous differential equation as
$\frac{d^{2} x(t)}{d t^{2}}-\frac{d x(t)}{d t}-2 x(t)=20 e^{-3 t}+5 \cos (2 t)$,
(a) set its particular solution as $x_{p}(t)=k_{1} e^{-3 t}+k_{2} \sin (2 t)+k_{3} \cos (2 t)$ and find the values of $k_{1}, k_{2} \& k_{3}$.
(b) for the homogeneous part of the given non-homogeneous differential equation, i.e.,
$\frac{d^{2} x(t)}{d t^{2}}-\frac{d x(t)}{d t}+2 x(t)=0$, set $\quad x(t)=e^{\alpha t}$ and find the appropriate values of α and thus write down its general solution $x_{h}(t)$
(c) write down the general solution of the given non-homogeneous differential equation in terms of the answers obtained in (a) \& (b). If the initial conditions are
$x(0)=\left.6 \quad \& \quad \frac{d x(t)}{d t}\right|_{t=0}=-1$, find its specific solution $x_{s}(t)$.
(10 marks)

Question three

Given the following Legendre's differential equation as :
$\left(1-x^{2}\right) \frac{d^{2} y(x)}{d x^{2}}-2 x \frac{d y(x)}{d x}+12 y(x)=0$
use the power series method, i.e., setting $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad$ and $\quad a_{0} \neq 0 \quad$,
(a) write down the indicial equations. Find the values of s and a_{1}. Show that a_{1} can be zero resulting from the indicial equations and thus use $a_{1}=0$ for the subsequent calculations in (b).
(10 marks)
(b) write down the recurrence relation. For all the appropriate values of s found in (a), set $a_{0}=1$ and use the recurrence relation to calculate the values of a_{n} up to the value of a_{6}. Thus write down two independent solution in their power series forms and show that one of the solutions is a polynomial.
(15 marks)

Question four

An U-tube capacitor extended very long into z direction with its $x-y$ cross section of area 4×5 as shown below:

Its electric potential $f(x, y)$ for the space in-between the two conductors, i.e., $0<x<4$ \& $0<y<5$, satisfies the following two dimensional Laplace equation :
$\frac{\partial^{2} f(x, y)}{\partial x^{2}}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}=0$
If connecting 3 volts battery to the given capacitor, the boundary conditions for the capacitor are $f(0, y)=0 \quad, \quad f(4, y)=0 \quad, f(x, 0)=0$ \& $f(x, 5)=3$
(a) set $f(x, y)=F(x) G(y)$ and use separation scheme to deduce the following ordinary differential equations :

$$
\left\{\begin{array}{l}
\frac{d^{2} F(x)}{d x^{2}}=-k^{2} F(x) \\
\frac{d^{2} G(y)}{d y^{2}}=+k^{2} G(y)
\end{array}\right.
$$

where k is a separation constant.

Question four (continued)

(b) write the general solution for (a) as

$$
\begin{aligned}
f(x, y) & =\sum_{\forall k} f_{k}(x, y) \\
& =\sum_{\forall k}\left(A_{k} \cos (k x)+B_{k} \sin (k x)\right)\left(C_{k} \cosh (k y)+D_{k} \sinh (k y)\right)
\end{aligned}
$$

where $A_{k}, B_{k}, C_{k} \& D_{k} \quad$ are arbitrary constants.
Apply three zero boundary conditions which are equivalent to
$f_{k}(0, y)=0, f_{k}(4, y)=0 \& f_{k}(x, 0)=0$, and show that the general solution can be simplified as:
$f(x, y)=\sum_{n=1}^{\infty} E_{n} \sin \left(\frac{n \pi x}{4}\right) \sinh \left(\frac{n \pi y}{4}\right)$
where $E_{n} \quad n=1,2,3, \cdots \cdots$ are arbitrary constants.
(10 marks)
(c) Apply the non-zero boundary condition, i.e., $f(x, 5)=3$, deduce that
$E_{n}=\frac{6(1-\cos (n \pi))}{n \pi \sinh \left(\frac{5 n \pi}{4}\right)} \quad n=1,2,3, \cdots \cdots$
(Hint : $\int_{0}^{4} \sin \left(\frac{n \pi x}{4}\right) \sin \left(\frac{m \pi x}{4}\right) d x=2 \delta_{n, m}=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ 2 & \text { if } & n=m\end{array}\right.$)

Question five

Given the following equations for coupled oscillator system as :
$\left\{\begin{array}{l}\frac{d^{2} x_{1}(t)}{d t^{2}}=-6 x_{1}(t)+3 x_{2}(t) \\ \frac{d^{2} x_{2}(t)}{d t^{2}}=4 x_{1}(t)-5 x_{2}(t)\end{array}\right.$
(a) Set $x_{1}(t)=X_{1} e^{i \omega t} \quad \& \quad x_{2}(t)=X_{2} e^{i \omega t}$, deduce the following matrix equation $A X=-\omega^{2} X \quad$ where $\quad A=\left(\begin{array}{cc}-6 & 3 \\ 4 & -5\end{array}\right) \quad$ \& $\quad X=\binom{X_{1}}{X_{2}}$
(b) Find the eigenfrequencies $\omega_{1} \& \omega_{2}$ of the given coupled system.

(6 marks)

(c) Find the eigenvectors $\bar{X}_{1} \& \bar{X}_{2}$ of the given coupled system corresponding to each eigenfrequencies $\omega_{1} \& \omega_{2}$ found in (b) respectively.
(d) Set $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$, then the general solution of $x(t)$ in terms of the eigenfrequencies and eigenvectors found in (b) and (c) can be written as
$x(t)=k_{1} \cos \left(\omega_{1} t\right) \bar{X}_{1}+k_{2} \sin \left(\omega_{1} t\right) \bar{X}_{1}+k_{3} \cos \left(\omega_{2} t\right) \bar{X}_{2}+k_{4} \sin \left(\omega_{2} t\right) \bar{X}_{2} \quad$ where
$k_{1}, k_{2}, k_{3} \& k_{4}$ are arbitrary constants.
If the initial conditions of the system are given as:
$x_{1}(0)=2, x_{2}(0)=0, \dot{x}_{1}(0)=-1 \& \dot{x}_{2}(0)=0$, then find the specific values of $k_{1}, k_{2}, k_{3} \& k_{4}$ which satisfies the given initial conditions.

The transformations between rectangular and spherical coordinate systems are :

$$
\left\{\begin{array} { c }
{ x = r \operatorname { s i n } (\theta) \operatorname { c o s } (\phi) } \\
{ y = r \operatorname { s i n } (\theta) \operatorname { s i n } (\phi) } \\
{ z = r \operatorname { c o s } (\theta) }
\end{array} \quad \& \quad \left\{\begin{array}{c}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right.\right.
$$

The transformations between rectangular and cylindrical coordinate systems are:

$$
\begin{aligned}
& \left\{\begin{array}{c}
x=\rho \cos (\phi) \\
y=\rho \sin (\phi) \\
z=z
\end{array} \quad \& \quad \begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right) \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{aligned} \begin{aligned}
\bar{\nabla} \bullet \vec{F} & =\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{5} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
\bar{\nabla} \times \vec{F} & =\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{3}}\right) \\
& +\frac{\bar{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{i}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and

$\left(u_{1}, u_{2}, u_{3}\right)$			for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system
$\left(\bar{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$	represents	$\left(\bar{e}_{x}, \bar{e}_{y}, \bar{e}_{z}\right)$	for rectangular coordinate system
	represents	$\left(\vec{e}_{p}, \bar{e}_{\phi}, \bar{e}_{z}\right)$	for cylindrical coordinate system
	represents	$\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right)$	for spherical coordinate system
$\left(h_{1}, h_{2}, h_{3}\right)$	represents	$(1,1,1)$	for rectangular coordinate system
	represents	(1,, , 1)	for cylindrical coordinate system
	represents	$(1, r, r \sin (\theta))$	for spherical coordinate system

