UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION, 2017/18

TITLE OF PAPER: DIGITAL ELECTRONICS

COURSE NUMBER: P411

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRACKETS.

.

THIS PAPER HAS SEVEN (7) PAGES INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

1

a) Assuming that all numbers are 16bits wide, complete the missing entries which are not shaded in the following table, Table 1. Show how the solution is derived.
 [8]

		à.	
Decimal	Hexadecimal	Binary	BCD
?	7199		
?			1000011110010010
	27ED	?	
13.375	······································	?	
	1	1. J. E	I

Table 1

b) Subtract 2B6D.5 ₁₆ from 5A6E.2 ₁₆ .	[4]
c) Subtract 101001_2 from 1001111_2 using 2's complement arithmetic.	[4]
 d) (i) Find the Gray code equivalent of decimal 14 and (ii) the decimal equivalent of Gray code number 1100. 	[2] [2]
	r. 1

e) Give brief statements that would help one remember the truth table of AND, NAND, OR, NOR, and EX-OR logic gate functions, irrespective of the number of inputs used. [5]

b)

a) Draw logic implementation of an inverter using (i) two-input NOR, (ii) two-input EX-OR.

[4]

Figure 2.1

	i) What is the logic function, Y, of the circuit in Figure 2.1	above? [4]
	ii) Further draw the circuit diagram for the same function Y	using one set of universal
	gates.	[6]
c)	Simplify the following expressions using Boolean algebra	
	i. $F = \overline{A}\overline{B}(\overline{A}B\overline{C} + \overline{A}\overline{B}C)$	[3]

$F = \frac{1}{(XY + XZ)}$	[3]

d) Convert the following Boolean expression into its canonical POS or maxterm form $F = (\overline{A} + B)(\overline{A} + B + \overline{C} + \overline{D})$ [5]

a) Write the simplified minterm Boolean expression for the Karnaugh Map below.

B $\mathbf{F} =$

[6]

- b) What are 'Don't cares' and how are they useful in the simplification of Boolean expressions? Give an example. [5]
- c) Design a combinational logic circuit which has one output Z and a 4-bit input ABCD representing a binary number. Z should be 1 if the input is at least 5, but is no greater than 11. Use one OR gate (three inputs) and three AND gates (with no more than three inputs each).
- d) Give the truth table and Boolean expressions for a full adder. [6]

a) Design and give the truth table of a four line to two line priority encoder with active high inputs and active high outputs. Priority is assigned to the higher-order data input line.

[6]

à

b) How do combinational logic circuits differ from sequential logic circuits? Give two examples of each category. [5]

c) Complete the following timing diagram for the flip-flop of Figure 4.1. [4]

d) Draw the logic symbol of the flip-flop represented by the function table; [4]

PR	CLR	CLOCK	J	к	Q(n+1)	Q'(n+1)
1	0	Х	Х	X	1	0
0	1	Х	Х	X	0	1
1	1	X	Х	X	Unst	able
0	0	•	0	1	1	0
0	0		1	0	0	1
0	0	Ť	1	1	Q(n)	Q'(n)
0	0	1	0	0	Тор	ggle

e) With the help of a schematic arrangement, explain how a J-K flip-flop can be used as
 a i) a D flip-flop and [3]

ii) a T flip-flop.

[3]

a) What is a magnitude comparator?	[4]
b) What are the main uses of shift registers and the 4 types of registers?	[6]
c) Determine the number of flip-flops required to construct a MOD 10 Ring c	ounter:
Also, write the count sequences.	[6]
A) Determine the second state is a filling the state of the D(A) second state is a state of the	11 1

d) Determine the resolution in millivolts of an 8-bit D/A converter having a full-scale analogue output voltage of 5V. [5]

e) A 12-bit D/A converter has a resolution of 2.44 mV. Determine its analogue output for a digital input of 1111111111111 [4]

Postula	tes and Theorems of :	Boolean Algebra
Postulate 2	(a) $x + 0 = x$	(b) $x - 1 = x$
Fostulate 5	(a) $x + x' = 1$	(b) $x + x' = 0$
Theorem 1	(a) x + x = x	(b) x + x = x (c)
Theorem 2	(a) $x + 1 = 1$	(b) $\hat{x} - 0 = 0$
Theorem 3, involution	$(\mathbf{x'})' = \mathbf{x}$	
Postulate 3, commutative	(a) $x + y = y + x$	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z)$ = $(x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) $x(y + z) = xy + xz$	(b) $x + yz$ = $(x + y) (x + z)$
Theorem 5, DeMorgan	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' - y'$
Theorem (, absorption	(a) $x + xy = x$	(b) x(x-y) = x

END OF P411 MAIN EXAMINATION

,