UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2017/2018

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Useful Data:

1 unified mass unit $(u) = 1.6605 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}/c^2$ Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$ Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$ Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Speed of light (vacuum) $c = 3.0 \times 10^8 \text{ m/s}$ electron mass $m_e = 9.11 \times 10^{-31} \text{ kg} = 5.4858 \times 10^{-4} \text{ u} = 0.511 \text{ MeV}/c^2$ neutron mass $m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 939.573 \text{ MeV}/c^2$ proton mass $m_p = 1.6726 \times 10^{-27} \text{ kg} = 1.0072765 \text{ u} = 938.280 \text{ MeV}/c^2$ 1year = $3.156 \times 10^7 \text{ s}$ nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2 \text{ fm}$ fine structure constant, $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = \frac{1}{137}$

 $\hbar c = 197~{\rm MeV fm}$

The table of nuclear properties is provided in the next page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
Н	1	1	1.007825	$1/2^{+}$	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^{+}$	$13.8 \text{ s} (\beta^{-})$
В	5	11	11.009305	$3/2^{-}$	80.2%
С	6	12	12.00000	0+	99.89%
Ν	7	15	15.00109	$1/2^{-}$	0.366%
N	7	18	18.014081	1-	_0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s
0	8	16	15.994915	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	$5/2^{+}$	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
P	15	30	29.978307	1+	2.50 min
Р	15	32	31.971725	1+	14.3 days
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	$3/2^{+}$	24.23%
Ar	18	37	36.966776	$3/2^+$	35.0 days
K	19	37	36.973377	$3/2^{-}$	1.23 s
Ca	20	43	42.958766	7/2-	0.135%
Ca	20	47	46.954543	$7/2^{-}$	$4.54 \text{ days} (\beta^-)$
Sc	21	47	46.952409	7/2-	$3.35 \text{ days} (\beta^-)$
Fe	26	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Со	27	60	59.933820	5+	5.27 yrs
Ni	28	60	59.930788	0+	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	28	65	64.930086	$5/2^{-}$	2.52 hrs (β^{-})
Cu	29	63	62.929599	$3/2^{-}$	69.2%
Cu	29	64	63.929800	1+	12.7 hrs
Cu	29	65	64.927793	$3/2^{+}$	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru	44	104	103.905424	0+	18.7%
Ru	44	105	104.907744	$3/2^{+}$	4.44 hrs (β^{-})
Pd	46	105	104.905079	$\frac{1}{5/2^+}$	22.2%
Cs	55	137	136.907073	$7/2^+$	$30.2 \text{ yrs} (\beta^{-})$
Ba	56	137	136.905812	$\frac{1}{3/2^+}$	11.2%
Tl	81	203	202.972320	$1/2^+$	29.5%
Os	76	191	190.960920	$\frac{1}{9/2^{-}}$	15.4 days (β^{-})
Ir	77	191	190.960584	$\frac{1}{3/2^+}$	37.3%
Au	79	199	198.968254	$\frac{1}{3/2^+}$	16.8%

- (a) The de Broglie wavelength is useful in determining whether one will obtain relevant information from scattering processes.
 - i. The de Broglie wavelength of a particle of mass m is determined from the momentum p using $p = \hbar k = \hbar 2\pi/\lambda$. Show that the de Broglie wavelength can be expressed as follows:

$$\lambda = 2\pi \frac{\hbar c}{mc^2} \sqrt{\frac{mc^2}{2E}}$$

where E is the kinetic energy of the particle.

- ii. A nuclear reactor produces fast neutrons (with $E \sim 1 MeV$) which are then slowed down to thermal neutrons (with $E \sim 0.025eV$, comparable to their thermal energy at room temperature). In research reactors, both type of neutrons could be selected to exit through a port and used in scattering experiments to study crystals. Crystal lattice spacing is usually a few angstrom, and to get information about the crystal in a scattering experiment, the radiation wavelength should be on the same order of the lattice spacing. Would you select fast or thermal neutrons for scattering experiments on crystals?
- iii. At what kinetic energies would electrons be suitable to probe nuclear structure?
- (b) List the main physical assumptions that Rutherford made in order to derive the (12) classical differential cross-section formula describing the scattering of α -particles from a thin metal foil target.

4

(5)

(6)

(2)

(a)	When we go through the different nuclides, we find that there are certain values of Z and N that are referred to as <i>magic number</i> nuclei.					
	i. What is meant by Magic Numbers?	(2) .				
	ii. Give three pieces of experimental evidence for the existence of Magic Numbers.	(6)				
(b)	Consider the shell model, where the first three shells are: (1S), (1P) and (1D,2S)	(0)				
	 Explain why S states do not split, while all other states get split into two. Use the shell model to determine spin and parity (J^P) for the ground of ¹⁵₈O, ⁷₄Be and ¹⁷₈O 	(2) (9)				
(c)	Explain why the simple shell model can not be used to predict excited states of even A nuclei.	(3)				
(d)	Explain why the simple shell model can only predict low lying excited states of odd A nuclei but fails for higher excited states.	(3)				

One can follow a few steps to show that for a square well potential in 3-D there is a minimum depth V_0 which will allow for a two body bound state for a system such as Deuteron. In this problem you have to follow similar steps to show that in 1-D there is no minimum depth required for the existence of a bound state.

- (a) Explain why the wave function will have either the cosine or sine function for x < R. (2) For the rest of the problem we will let $\psi(x) = B\cos(k_1x)$ for x < R.
- (b) Explain why the term with a positive exponent is not admissible in the wave function, i.e we take $\psi(x) = Ce^{-k_2x}$ for x > R when x > 0. (2)
- (c) Using the boundary conditions that the wave function and its derivative are continuous at the boundary x = R, show that. (5)

$$k_2 = k_1 \tan(k_1 R).$$

- (d) Using the complete normalized wave function, (equations above) calculate the expectation value of the potential energy. Note that for x < 0 you transform x to -x in the wave function described above. (5)
- (e) Calculate the expectation value of the kinetic energy
- (f) Show that, for a bound state to exist, it must be true that $\langle T \rangle < -\langle V \rangle$. (3)

(5)

(g) Finally, show that a bound state will always exist for a square well potential in 1-D. (3) Note: for x < R we have $\psi(x) = A\sin(k_1x) + B\cos(k_1x)$ and for x > R we have $\psi(x) = Ce^{-k_2x} + De^{k_2x}$. Here $k_1 = \sqrt{2m(E+V_0)/\hbar^2}$ and $k_2 = \sqrt{-2mE/\hbar^2}$.

- (a) A by-product of some fission reactors is ²³⁹Pu (plutonium-239), which is an α emitter with a half life of 24120 years. Consider 1 kg of ²³⁹Pu at t = 0, [Atomic mass of ²³⁹Pu = 239.052163 u.
 - i. What is the number of ²³⁹Pu nuclei at t = 0? (2)

(2)

- ii. What is the initial activity?
- iii. For how long would you need to store plutonium-239 until it has decayed to a (3) safe activity level of 0.1 Bq?
- (b) Radionuclides are useful sources of small amounts of energy in space vehicles, remote (5) communication stations, heart pacemakers, etc. Calculate the initial power available from a gram of ²¹⁰Po, an α-emitter with an energy of 5.30 MeV and a half life of 138 days. Give your answer in Watts. [Atomic mass of ²¹⁰Po = 209.982848 u]
- (c) In stars that are slightly more massive than the Sun, hydrogen burning is carried out mainly by the CNO cycle, whose first step is $p+_{6}^{12}C \rightarrow_{7}^{13}N+\gamma$. Estimate the energy of the γ , assuming the two nuclei are essentially at rest. Justify any simplifying assumptions you make. [Atomic masses: ${}_{1}^{1}H = 1.007825 \text{ u}, {}_{6}^{12}C = 12.00000 \text{ u}, {}_{7}^{13}N = 13.005739 \text{ u}]$
- (d) Consider the nuclear fission reaction $n + {}^{235}_{92} U \rightarrow {}^{141}_{56} Ba + {}^{92}_{36} Kr + 3n$.
 - i. Calculate the energy released (in MeV) in the reaction. [Atomic masses: ${}^{235}_{92}$ U = (4) 235.043915 u, ${}^{92}_{36}$ Kr = 91.8973 u, ${}^{141}_{56}$ Ba = 140.9139 u and neutron mass is 1.008665 u]
 - ii. You wish to run a 1000 MW power reactor using ${}^{235}_{92}$ U fission. How much ${}^{235}_{92}$ U (5) is required for one day's operation?

(a) The differential cross section for Rutherford scattering is proportional to $\sin^{-4}(\theta/2)$ where θ is the scattering angle. Show that this term leads to an infinite cross section in the limit $\theta \to 0$. Explain why, in reality, experimental differential cross sections remain finite as $\theta \to 0$.

(5)

(b) The nuclear electric form factor is

$$F(\vec{q}) = \int \rho_{ch}(\vec{r}) \exp(-i\vec{q}\cdot\vec{r}) d^3\vec{r},$$

where ρ_{ch} is the charge density.

i. In the case of spherical symmetry, we have only the radial dependence. Show (5) that $F(\vec{q})$ becomes

$$F(q^2) = \frac{4\pi}{q} \int \rho_{ch}(r) \sin(qr) r dr$$

- ii. Assuming that the nuclear charge density is uniform and that the nucleus is a (5) sphere of radius R, obtain an expression for the form factor of a nucleus.
- (c) Show that, for high-energy elastic scattering where the projectile rest mass may be (10) ignored, the magnitude of the momentum transfered q from the incident particle is given by

$$(cq)^2 = 4E^2 \sin^2(\theta/2),$$

where E is the energy of the projectile, and θ the scattering angle.