UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2017/2018

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

Useful Data:

1 unified mass unit $(u) = 1.6605 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}/c^2$ Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$ Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$ Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Speed of light (vacuum) $c = 3.0 \times 10^8 \text{ m/s}$ electron mass $m_e = 9.11 \times 10^{-31} \text{ kg} = 5.4858 \times 10^{-4} \text{ u} = 0.511 \text{ MeV}/c^2$ neutron mass $m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 939.573 \text{ MeV}/c^2$ proton mass $m_p = 1.6726 \times 10^{-27} \text{ kg} = 1.0072765 \text{ u} = 938.280 \text{ MeV}/c^2$ lyear = $3.156 \times 10^7 \text{ s}$ nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2 \text{ fm}$ fine structure constant, $\alpha = \frac{c^2}{4\pi\epsilon_0 hc} = \frac{1}{137}$

 $\hbar c = 197~{\rm MeV fm}$

The table of nuclear properties is provided in the next page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
H	1	1	1.007825	$1/2^{+}$	99.985%
Не	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^+$	$13.8 \text{ s} (\beta^{-})$
В	5	11	11.009305	$\frac{1}{3/2^{-}}$	80.2%
С	6	12	12.00000	0+	99.89%
N	7	15	15.00109	$1/2^{-}$	0.366%
N	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s
0	8	16	15.994915	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	$5/2^+$	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
Р	15	30	29.978307	1+	2.50 min
P	15	32	31.971725	1+	14.3 days
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	$3/2^{+}$	24.23%
Ar	18	37	36.966776	$\frac{'}{3/2^+}$	35.0 days
K	19	37	36.973377	3/2-	1.23 s
Ca	20	43	42.958766	7/2-	0.135%
Ca	20	47	46.954543	$7/2^{-}$	4.54 days (β^{-})
Sc	21	47	46.952409	7/2-	$3.35 \text{ days } (\beta^-)$
Fe	26	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Со	27	60	59.933820	5+	5.27 yrs
Ni	28	60	59.930788	0+	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	28	65	64.930086	$5/2^{-}$	$2.52 \text{ hrs } (\beta^-)$
Cu	29	63	62.929599	$3/2^{-}$	69.2%
Cu	29	64	63.929800	1+	12.7 hrs
Cu	29	65	64.927793	3/2+	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru.	44	104	103.905424	0+	18.7%
Ru	44	105	104.907744	$3/2^{+}$	4.44 hrs (β^{-})
Pd	46	105	104.905079	$\frac{1}{5/2^+}$	22.2%
Cs	55	137	136.907073	$7/2^+$	$30.2 \text{ yrs} (\beta^{-})$
Ba	56	137	136.905812	$3/2^{+}$	11.2%
Tl	81	203	202.972320	$\frac{1}{1/2^{+}}$	29.5%
Os	76	191	190.960920	9/2-	15.4 days (β^-)
Ir	77	191	190.960584	$\frac{1}{3/2^{+}}$	37.3%
Au	79	199	198.968254	$\frac{7}{3/2^+}$	16.8%

According to the liquid drop model the nuclear binding energy may be approximated by the semi-empirical formula

$$-B(A,Z) = -a_vA + a_sA^{2/3} + a_c\frac{Z^2}{A^{1/3}} + a_A\frac{(Z-N)^2}{A} + \frac{[(-1)^Z + (-1)^N]}{2}\frac{a_P}{A^{1/2}},$$

where A is the atomic mass number, Z is the atomic number and N=AZ.

- (a) Discuss the physical origin of each of the terms on the right-hand side of the above (10) formula.
- (b) Considering a set of isobaric nuclei, show that the relationship between A and Z (10) takes the form

$$Z = \frac{A}{2 + \frac{a_c}{2a_A} A^{2/3}}$$

in the liquid drop model for naturally occurring nuclei with odd atomic mass number.

- (c) State the assumptions of the liquid-drop model.
- (d) Why does the model fail to account for the binding energies of magic number nuclei? (2)

(3)

The deuteron has total angular momentum J = 1 so that the ground state is a triplet state. The ground state is not a pure S state, i.e L = 0 state, and is formed by an admixture of the triplet S-state $({}^{3}S_{1})$ and the triplet D(L=2)-state $({}^{3}D_{1})$,

$$\Psi = \alpha \psi({}^3S_1) + \beta \psi({}^3D_1).$$

Here $|\alpha|^2 + |\beta|^2 = 1$.

- (a) What is the value of the spin S for the deuteron?
- (b) Explain why the P-state, i.e L = 1 state is not compatible with the triplet S-state. (3)
- (c) Given that the magnetic moment of deuteron is given by $\mu_D = \mu_p + \mu_n + \frac{1}{2}\mathbf{L} = g\mu_N \mathbf{J}$, (8) show that

$$g\mathbf{J} = \frac{1}{2}(g_p + g_n)\mathbf{S} + \frac{1}{2}(g_p - g_n)(\mathbf{s}_p - \mathbf{s}_n) + \frac{1}{2}\mathbf{L},$$

where $\mu_i = g_i \mu_N \mathbf{s}_i$, $\mathbf{S} = \mathbf{s}_p + \mathbf{s}_n$.

(d) Show that $\langle \mathbf{s}_p - \mathbf{s}_n \rangle = 0$ in triplet states. Hence show that

$$g\mathbf{J} = \bar{g}\mathbf{S} + \frac{1}{2}\mathbf{L},$$

where $\bar{g} = \frac{1}{2}(g_p + g_n)$.

(e) Show that $g\mathbf{J}^2 = \bar{g}\mathbf{S}\cdot\mathbf{J} + \frac{1}{2}\mathbf{L}\cdot\mathbf{J}$.

(4)

(2)

(8)

(a) Summarize the standard model of elementary particles.	
(b) If the proton-electron model of the nucleus were valid, show that all neutral atoms would contain an even number of fermions.	
(c) Give two examples of each:	
i. Quarks	(2)
ii. Leptons	(2)
iii. Baryons	(2)
iv. Mesons	(2)
v. Unifying Theories	(2)

(a)	Consider a nuclide P with A^P total nucleons (Z^P protons and N^P neutrons)	
	i. write down the relation between nuclear mass, the proton mass, the neutron mass, and the binding energy, B_P^E .	(2)
	ii. In case of alpha decay $P \to D + \alpha$, derive the relation between the Q-value of the energy released and the binding energy of the parent nuclide B_{P}^{E} , the binding energy of the daughter nuclide, B_{D}^{E} , and the binding energy of the alpha -particle, B_{α}^{E} .	(6)
(b)	The beta decay process involves an emission of a neutrino as a third particle.	
	i. Explain how the energy spectrum of electrons produced in β -decay processes is evidence for the existence of the neutrino.	(2)
	ii. State the main properties ascribed to the neutrino.	(3)
	iii. Calculate the Q-value for neutron β -decay.	(3)
(c)	Briefly describe three processes through which gamma radiation interacts with mat- ter.	(9)

·

(a)	Write down an expression for the energy released during the spontaneous fission process of a nuclide.	(2)
(b)	Calculate the energy released in the process ${}^{235}\text{U} \rightarrow {}^{140}\text{Xe} + {}^{92}\text{Sr} + 3n$, given that the binding energies of the three nuclides are 1784 MeV for ${}^{235}\text{U}$, 1161 MeV for ${}^{140}Xe$ and 796 MeV for ${}^{92}\text{Sr}$.	(3)
(c)	Discuss qualitatively (with the aid of diagrams) how the shape of a nucleus changes during nuclear fission.	(5)
(d)	Hence explain why spontaneous fission is extremely rare, but fission can be induced by bombarding fissile material with neutrons.	(4)
(e)	Explain how a chain reaction occurs in nuclear fission.	(3)
(f)	Why is it necessary for a sample of fissile material to be greater than a critical mass in order for a chain reaction to occur?	(4)
(g)	In a nuclear reactor how is the chain reaction controlled in order to produce a steady output of energy?	(4)