UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2017/2018

TITLE OF PAPER: STATISTICAL PHYSICS & THERMODYNAMICS

COURSE NUMBER: P461

TIME ALLOWED : THREE HOURS

ANSWER ANY **FOUR** OF THE FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

APPENDICES 1 AND 2 CONTAIN DEFINITE INTEGRALS AND PHYSICAL CONSTANTS.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question One

- (a) (i) Explain what is meant by *phase space*. (4 marks)
 - (ii) What is the volume of a state in phase space? Show that your answer is dimensionally correct. (1+ 3 marks)
 - (iii) What is the number of allowed states per unit volume in phase space? (1 mark)
- (b) Given that the density of states $g(\varepsilon)d\varepsilon = \frac{2\pi V}{h^3}(2m)^{3/2}\varepsilon^{1/2}d\varepsilon$, show that the Maxwell-Boltzmann distribution function can be written in the differential form

$$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/(2kT)} v^2 dv \,.$$
 (5 marks)

- (c) (i) State the law of equipartition of energy. (3 marks)
 - (ii) Prove the above law for the case in which the energy is a quadratic function of position.

(8 marks)

Question Two

(a) Derive the partition function of a classical gas:

$$Z = \frac{v}{h^3} \left(2\pi m kT\right)^{3/2} \tag{8 marks}$$

(b) (i) Show that the pressure of the classical gas $P = NkT \frac{\partial \ln Z}{\partial V}$. (5 marks)

- (ii) Hence derive the ideal gas equation P V = N k T (5 marks)
- (c) Calculate the translational partition function of an hydrogen molecule confined to a volume of 100 cm³ at 300 K. (7 marks)

Ouestion Three

(a) Write down the Bose-Einstein distribution function for a system of bosons and show under what conditions it can approximate the classical Maxwell-Boltzmann distribution function. (7 marks)

Given:
$$\alpha = \ln \left[\frac{Nh^3}{(2\pi mkT)^{3/2} V} \right]$$

- (b) Use the Bose-Einstein distribution function of an assembly of identical non-interacting particles in thermal equilibrium to derive the Planck's radiation law for spectral distribution of energy radiated from a constant temperature enclosure. (11 marks)
- (c) Obtain an expression for the total energy per unit volume emitted from the enclosure at temperature T. (7 marks)

Question Four

- (a) State what is meant by *Fermi energy*.
- (b) Show that the average kinetic energy of a particle in a Fermi gas at 0 K is (3/2) times the Fermi energy at 0 K, written as $\epsilon_F(0)$.

Density of states of fermions $g(\varepsilon)d\varepsilon = \frac{4\pi V}{h^3}(2m)^{3/2}\varepsilon^{1/2}d\varepsilon$

Average energy
$$E_{ave} = \frac{1}{N} \int \varepsilon dN$$

(5 marks)

(2 marks)

- (c) (i) By deriving an appropriate expression, show that the contribution of electrons towards the heat capacity of a material is proportional to its temperature. (10 marks)
 - (ii) In sodium, there are about 2.6 $\times 10^{28}$ electrons per cubic meter. Calculate the value of the heat capacity per electron of sodium at 300 K. (8 marks)

$$N = \frac{8\pi V (2m)^{3/2}}{3h^3} \varepsilon_F^{3/2}$$

Question Five

(a) Derive the Fermi-Dirac distribution function for a system of fermions,

$$n_{S} = \frac{g_{S}}{e^{-(\alpha + \beta e_{S})} + 1}$$
, where the symbols have their usual meanings.
(12 marks)

(b) (i) Given that the density of states of a system of fermions is:

$$g(\varepsilon)d\varepsilon = \frac{4\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} d\varepsilon$$

where the symbols have their usual meanings, show that the Fermi energy of a system of fermions

$$\varepsilon_F = \frac{h^2}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$$

(8 marks)

(ii) Calculate the Fermi energy of a metal having density $8.5 \times 10^2 \text{ kg m}^{-3}$ and atomic weight 40. (5 marks)

Appendix 1

Various definite integrals

 $\int_0^\infty e^{-ax^2} dx = \frac{1}{2}\sqrt{\frac{\pi}{a}}$ $\int_0^\infty e^{-ax^2} x \, dx = \frac{1}{2a}$ $\int_0^\infty e^{-ax^2} x^3 \, dx = \frac{1}{2a^2}$ $\int_0^\infty e^{-ax^2} x^2 \, dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}}$ $\int_0^\infty e^{-ax^2} x^4 dx = \frac{3}{8a^2} \left(\frac{\pi}{a}\right)^{1/2}$ $\int_0^\infty e^{-ax^2} x^5 \, dx = \frac{1}{a^3}$ $\int_0^\infty \frac{x^3 \, dx}{e^x - 1} = \frac{\pi^4}{15}$ $\int_{0}^{\infty} e^{-ax} dx = \frac{1}{a}, (a > 0)$ $\int_0^\infty \frac{x^4 e^x}{(e^x - 1)^2} \, dx = \frac{4\pi^4}{15}$ $\int_0^\infty x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$

Appendix 2

Physical Constants

Quantity

symbol

value

Speed of light	с	$3.00 \ge 10^8 \text{ ms}^{-1}$
Planck's constant	h	6.63 x 10 ⁻³⁴ J.s
Boltzmann constant	k	1.38 x 10 ⁻²³ JK ⁻¹
Electronic charge	e	1.61 x 10 ⁻¹⁹ C
Mass of electron	m _e	9.11 x 10 ⁻³¹ kg
Mass of proton	m _p	1.67 x 10 ⁻²⁷ kg
Gas constant	R	8.31 J mol ⁻¹ K ⁻¹
Avogadro's number	N _A	$6.02 \text{ x } 10^{23} \text{ mol}^{-1}$
Bohr magneton	$\mu_{\scriptscriptstyle m B}$	9.27 x 10 ⁻²⁴ JT ⁻¹
Permeability of free space	$\mathbf{\mu}_{0}$	$4\pi \times 10^{-7} \text{Hm}^{-1}$
Stefan-Boltzmann constant	σ	5.67 x 10 ⁻⁸ Wm ⁻² K ⁻⁴
Atmospheric pressure		1.01 x 10 ⁵ Nm ⁻²
Mass of $_{2}^{4}$ He atom		6.65 x 10 ⁻²⁷ kg
Mass of 2^3 He atom		5.11 x 10 ⁻²⁷ kg
Volume of an ideal gas at STP		22.4 L mol ⁻¹

.