UNIVESITY OF SWAZILAND FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

Supplementary Examination 2017/2018
COURSE NAME: Thermodynamics/Thermofluids COURSE CODE: PHY242/EEE202 TIME ALLOWED: 3 hours

ANSWER ANY FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

The exam paper has eight (8) printed pages, including an appendix.

Question 1

(a). A heat engine absorbs 360 J of energy and performs 25 J of work in each cycle. Find
(i) The efficiency of the engine.
[2 marks]
(ii) The energy expelled to the cold reservoir in each cycle.
[2 marks]
(b). A particular engine has a power output of 5.0 kW and an efficiency of 25.0%. Assuming the engine expels 8000 J of energy in each cycle, find
(i) The energy absorbed in each cycle.

> [3 marks]
(ii) The time for each cycle.
(c). The highest thermal efficiency of a certain engine is 30%. If the engine uses the atmosphere which has temperature of 300 K as its cold reservoir, what is the temperature of its hot reservoir? [4 marks]
(d). Suppose that a 1.0 kg of water at $0^{\circ} \mathrm{C}$ is mixed with equal mass of water at $100^{\circ} \mathrm{C}$. After equilibrium is reached, the mixture has a uniform temperature of $50^{\circ} \mathrm{C}$. What is the change in entropy, ΔS, of the system?
[4 marks]
(e). State Carnot's theorem.

Question 2

(a). Define a universe in thermodynamics.
(b). What is the difference between heat and temperature in thermodynamics?
(c). What is the specific heat capacity of a substance. [2 marks]
(d). Define the following terms;
(i) Isochoric (Isometric) process.
[2 marks]
(ii) Adiabatic process.
(iii) Closed system.
(e). A 1.0 mol sample of an ideal gas is kept at $0.0^{\circ} \mathrm{C}$ during an expansion from 3.0ℓ to 10.0ℓ.
(i) How much work is done during the gas expansion?
[2 marks]
(ii) How much energy transfer by heat occurs with the surroundings in this process?
[3 marks]
(iii) If the gas is returned to the original volume by means of an isobaric process, how much work is done by the gas?
[2 marks]
(f). What is the difference between intensive and extensive properties of a thermodynamic system?

Question 3

(a). A steel railroad track has a length of 30.0 m when the temperature is $0^{\circ} \mathrm{C}$. What is the length when its temperature is $40^{\circ} \mathrm{C}$?
[2 marks]
(b). An ideal gas occupies a volume of $100 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$ and 100 Pa . find the number of moles of gas in the container.
[2 marks]
(c). A spray containing a propellant gas at twice the atmospheric pressure (202 kPa) and having a volume of $125 \mathrm{~cm}^{3}$ is at $22^{\circ} \mathrm{C}$. It is then tossed into an open fire. When the temperature of the gas in the can reaches $195^{\circ} \mathrm{C}$, what is the pressure inside the can? (Assume any change in volume of the can is negligible).
[3 marks]
(d). Air, at $20^{\circ} \mathrm{C}$ and 1.0 atm pressure, in the cylinder of a diesel engine is compressed from a volume of $800.0 \mathrm{~cm}^{3}$ to a volume of $60.0 \mathrm{~cm}^{3}$. Assume air behaves as an ideal gas with the ratio $\frac{C_{p}}{C v}=1.40$ and the compression is adiabatic. Find the final pressure and temperature of the air.
[4 marks]
(e). One mole of an ideal gas is expanded isothermally and reversibly at $\mathrm{T}=300 \mathrm{~K}$ from 10 atm to 1 atm . Calculate the work done.
[4 marks]
(f). Consider a 3 m high. 5 mm wide, and 0.3 m thick wall whose thermal conductivity is $\mathrm{k}=0.9 \mathrm{~W} /\left(\mathrm{m} .{ }^{\circ} \mathrm{C}\right)$ (Fig. 1). On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be $16^{\circ} \mathrm{C}$ and $2^{\circ} \mathrm{C}$, respectively. Determine the rate of heat loss, \dot{Q}, through the wall on that day.

Figure 1:

Question 4

(a). One mole of ideal gas with constant heat capacity C_{v} is placed inside a cylinder. The cylinder is thermally insulated from the environment and inside the cylinder there is a piston which can move without friction along the vertical axis. Pressure, P_{1} is applied to the piston. At some point, P_{1} is abruptly changed to P_{2} (e.g. by adding or removing a weight from the piston). As a result, the gas volume changes adiabatically.
(i) Show that $C_{p}-C_{v}=R$.

[4 marks]

(ii) Show that the volume, V_{2}, can be expressed as $V_{2}=\frac{R T_{2}}{P_{2}}$. Show that after equilibrium has been reached, the temperature, T_{2}, can be expressed as $T_{2}=\frac{C_{v} P_{1}+P_{2} V_{2}}{C_{p}}$.

[8 marks]

(Hint: Use first law of thermodynamics $\Delta E_{\text {int }}=\Delta Q-W, W=$ $P \Delta V$, and $\Delta E_{\text {int }}=n C_{v} \Delta T$)
(b). After thermodynamic equilibrium has been established in (a), above, the pressure is abruptly reset to its original value P_{1}. Compute final values of the temperature T_{f} and the volume V_{f} after the thermodynamic equilibrium has been reached again. Use the first law of thermodynamics and the adiabatic equation to compute the difference in temperatures $\left(T_{f}-T_{1}\right)$.
[8 marks]

Question 5

(a). Show that while the slope of the fusion curve in a P-T diagram for substances that contract on freezing is positive, the slope of the fusion curve of the substances that expand on freezing is negative.
(b). Sketch a P-T diagram for both cases in (a) above. Designate the regions of the vapour, liquid and solid plases, the phase transition curves, the triple and the critical point.
(c). The latent heat of fusion of water at $0^{\circ} \mathrm{C}$ and 1 atm is $l_{12}=3.34 \times 10^{5}$ J / kg. The volumes per gram in the solid and liquid phase are $v_{1}=1.09$ $\mathrm{cm}^{3} / \mathrm{g}, v_{2}=1.00 \mathrm{~cm}^{3} / \mathrm{g}$ respectively. Calculate the slope of the fusion curve (in atm/K) at $0^{\circ} \mathrm{C}$.
(d). Assuming that the latent heat of fusion is approximately constant, and that the fusion curve in a P-T diagram is linear, calculate the pressure required to decrease the melting point of ice by $7.5^{\circ} \mathrm{C}$.
[5 marks]

Question 6

(a). An engine, with an ideal gas as the working substance, operates in the reversible cycle, $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, shown in figure 2 . Assume that P_{1}, V_{1} and P_{3} as well as heat capacity C_{v} are known.

Figure 2:
(i) Calculate the work, the heat flow and the internal energy change for each leg of the cycle.
[10 marks]
(ii) Calculate the entropy change for each leg of the cycle. What is the net change of the entropy? Why?
[4 marks]
(iii) Define the efficiency of an engine.
[2 marks]
(iv) Show that in our case the efficiency is given by

$$
\eta=1-\frac{1}{\gamma}\left(\frac{1-\frac{P_{3}}{P_{1}}}{1-\frac{V_{1}}{V_{3}}}\right)
$$

$$
\text { where } \gamma=\frac{C_{p}}{C_{v}} .
$$

Appendix

Some usefull information

- $\left.\frac{d P}{d T}\right|_{1 \rightarrow 2}=\frac{l_{12}}{T\left(v_{2}-v_{1}\right)}$
- $d U(S, V)=T d S-P d V$
- $F=U-T S$
- $G=U-T S+P V$
- $H=U+P V$
- $P V=n R T$
- $P V^{\gamma}=$ const.
- $R=8.31 J / \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. universal gas constant
- $k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$. Boltzmann constant
- $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$
- Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
- Linear expansion coefficient for steel, $\alpha=11 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$,

