```
UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION 2017/2018
TITLE OF PAPER : MATHEMATICAL METHODS FOR
    PHYSICISTS
COURSE NUMBER : P272/PHY271
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
```

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272/PHY271 MATHEMATICAL METHODS FOR PHYSICIST

Question one

(a) Given the following relations between the unit vectors of cylindrical, spherical and Cartesian coordinate systems as

$$
\left\{\begin{array} { c }
{ \vec { e } _ { \rho } = \vec { e } _ { x } \operatorname { c o s } (\phi) + \vec { e } _ { y } \operatorname { s i n } (\phi) } \\
{ \vec { e } _ { \phi } = - \vec { e } _ { x } \operatorname { s i n } (\phi) + \vec { e } _ { y } \operatorname { c o s } (\phi) }
\end{array} \quad \& \quad \left\{\begin{array}{l}
\vec{e}_{r}=\vec{e}_{p} \sin (\theta)+\vec{e}_{z} \cos (\theta) \\
\vec{e}_{\theta}=\vec{e}_{\rho} \cos (\theta)-\vec{e}_{z} \sin (\theta)
\end{array}\right.\right.
$$

and deduce the following:
(i) $\frac{d \vec{e}_{\phi}}{d t}=-\bar{e}_{\rho} \frac{d \phi}{d t} \quad$ in terms of cylindrical unit vectors;
(3 marks)
(ii) $\frac{d \vec{e}_{\phi}}{d t}=-\vec{e}_{r} \sin (\theta) \frac{d \phi}{d t}-\bar{e}_{\theta} \cos (\theta) \frac{d \phi}{d t} \quad$ in terms of spherical unit vectors.
(4 marks)
(b) Given $\vec{F}=\vec{e}_{x}\left(3 x^{2}+y z\right)+\vec{e}_{y}(x z)+\vec{e}_{z}(x y)$ and find the value of $\int_{P_{1}, L}^{P_{2}} \vec{F} \bullet d \vec{l} \quad$ if $P_{1}:(0,0,2), P_{2}:(3,9,2)$ and
(i) $\quad L$: a straight line from P_{1} to P_{2} on $z=2$ plane,
(ii) L : a cubic curved path $y=\frac{1}{3} x^{3}$ from P_{t} to P_{2} on $z=2$ plane. Compare this answer with that obtained in (b) (i) and comment on the conservative nature of the given vector field.
($7+1$ marks)
(iii) Find $\vec{\nabla} \times \vec{F}$. Does this answer in agreement with the comment in (b) (ii)?
($3+1$ marks)

Question two

Given a vector field $\vec{F}=\vec{e}_{r}\left(r^{2} \cos (\theta)\right)+\bar{e}_{\theta}\left(2 r^{2}\right)+\vec{e}_{\phi}\left(-3 r^{2} \cos (\phi)\right)$ in spherical coordinates,
(a) find the value of $\oint_{S} \vec{F} \bullet d \vec{s}$ if $S=S_{1}+S_{2}$ where
$S_{l}:\left(\begin{array}{lll}r=5, \frac{\pi}{2} \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi & \& & d \vec{s}=\vec{e}_{r}, r^{2} \sin \theta d \theta d \phi \\ r=5 \\ & \xrightarrow{r} \vec{e}_{r} 25 \sin \theta d \theta d \phi\end{array}\right)$
$S_{2}:\left(\begin{array}{rr}\theta=\frac{\pi}{2}, 0 \leq r \leq 5,0 \leq \phi \leq 2 \pi & \& \quad d \vec{s} \\ & \\ & -\vec{e}_{\theta} r \sin \theta d r d \phi \\ \theta=\frac{\pi}{2} \\ & -\vec{e}_{\theta} r d r d \phi\end{array}\right)$
i.e., S is a lower-half semi-spherical closed surface centered at the origin with a radius of 5 .
(10 marks)
(b) (i) Evaluate $\vec{\nabla} \bullet \vec{F}$ and show that

$$
\begin{equation*}
\vec{\nabla} \bullet \vec{F}=4 r \cos (\theta)+2 r \cot (\theta)+3 r \frac{\sin (\phi)}{\sin (\theta)} \tag{4marks}
\end{equation*}
$$

(ii) Find the value of $\iiint_{V}(\vec{\nabla} \bullet \vec{F}) d v$ where V is bounded by S given in (a), i.e., $V: 0 \leq r \leq 5, \frac{\pi}{2} \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi \quad \& \quad d v=r^{2} \sin \theta d r d \theta d \phi$.
Compare this answer to that obtained in (a) and make a brief comment.
(10+1 marks)

Question three

Given the following Bessel's differential equation as :

$$
x^{2} \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}+\left(x^{2}-4\right) y(x)=0
$$

Solve by using the power series method, i.e., setting $\quad y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ and $a_{0} \neq 0$.
(a) Write down the indicial equations. Deduce that $s=-2$ or +2 and $a_{1}=0$.
(9 marks)
(b) Write down the recurrence relation. For $s=-2$ or +2 , set $a_{0}=1$ and use the recurrence relation to calculate the values of a_{n} up to the value of a_{6}. Thus write down two independent solution in their power series forms and show that one of the series solutions is a divergent series and the other is linearly dependent to the well-known Bessel's function of the first kind of order 2, i.e., $J_{2}(x)\left(=\frac{1}{8} x^{2}-\frac{1}{96} x^{4}+\frac{1}{3072} x^{6}-\frac{1}{184320} x^{8}+\cdots \cdots.\right)$.
(12+4 marks)

Question four

An elastic string of length 9 is fixed at its two ends, i.e., at $\quad x=0 \quad \& \quad x=9$ and its transverse deflection $u(x, t)$ satisfies the following one-dimensional wave equation $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=4 \frac{\partial^{2} u(x, t)}{\partial x^{2}}$.
(a) Set $u(x, t)=F(x) G(t)$ and use separation scheme to deduce the following ordinary differential equations:
$\left\{\begin{array}{l}\frac{d^{2} F(x)}{d x^{2}}=k F(x) \\ \frac{d^{2} G(t)}{d y^{2}}=4 k G(t)\end{array}\right.$
where k is a separation constant.
In view of the given boundary conditions, k should be a negative constant, i.e., $k<0$, explain briefly why?
($4+1$ marks)
(b) By direct substitution, show that . $u(x, t)=\sum_{n=1}^{\infty} E_{n} \sin \left(\frac{n \pi x}{9}\right) \cos \left(\frac{2 n \pi t}{9}\right)$ where $E_{n} \quad n=1,2,3, \cdots \cdots$ are arbitrary constants, satisfies two fixed end conditions, i.e., $u(0, t)=0=u(10, t)$, as well as zero initial speed condition, i.e., $\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0$.
(7 marks)
(c) Then find E_{n} in terms of n if the initial position of the string, i.e., $u(x, 0)$, is given as $u(x, 0)=\left\{\begin{array}{lll}2 x & \text { if } & 0 \leq x \leq 3 \\ -x+9 & \text { if } & 3 \leq x \leq 9\end{array}\right.$
(hint : $\int_{x=0}^{9} \sin \left(\frac{n \pi x}{9}\right) \sin \left(\frac{m \pi x}{9}\right) d x=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ \frac{9}{2} & \text { if } & n=m\end{array} \quad \&\right.$

$$
\left.\int x \sin \left(\frac{n \pi x}{9}\right) d x=\frac{81}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{9}\right)-\frac{9}{n \pi} x \cos \left(\frac{n \pi x}{9}\right)\right)
$$

Thus calculate the values of E_{1}, E_{2} and E_{3}.
(10+3 marks)

Question five

Given the following non-homogeneous differential equation as
$\frac{d^{2} x(t)}{d t^{2}}+6 \frac{d x(t)}{d t}+13 x(t)=10 e^{-4 t}+15 \sin (t)$,
(a) find its particular solution $x_{p}(t)$ and show that

$$
\begin{equation*}
x_{p}(t)=2 e^{-4 t}+\sin (t)-\frac{1}{2} \cos (t) . \tag{9marks}
\end{equation*}
$$

(b) Find the general solution $x_{h}(t)$ for the homogeneous part of the given differential equation, i.e., $\frac{d^{2} x(t)}{d t^{2}}+6 \frac{d x(t)}{d t}+13 x(t)=0$.
(c) Write down the general solution of the given non-homogeneous differential equation $x_{g}(t)$. If the initial conditions are given as $x(0)=-\left.3 \quad \& \quad \frac{d x(t)}{d t}\right|_{t=0}=5$, find its specific solution $x_{s}(t)$. ($1+9$ marks)

Useful informations

The transformations between rectangular and spherical coordinate systems are :

$$
\left\{\begin{array} { c }
{ x = r \operatorname { s i n } (\theta) \operatorname { c o s } (\phi) } \\
{ y = r \operatorname { s i n } (\theta) \operatorname { s i n } (\phi) } \\
{ z = r \operatorname { c o s } (\theta) }
\end{array} \quad \& \quad \left\{\begin{array}{c}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right.\right.
$$

The transformations between rectangular and cylindrical coordinate systems are :

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}} \\
& \vec{\nabla} \bullet \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
& \vec{\nabla} \times \vec{F}=\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right) \\
& \quad+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\bar{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3}$ and

$\left(u_{1}, u_{2}, u_{3}\right)$	represents represents represents	$\begin{gathered} (x, y, z) \\ (\rho, \phi, z) \\ (r, \theta, \phi) \end{gathered}$	for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system
$\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$	represents represents represents	$\begin{aligned} & \left(\vec{e}_{x}, \bar{e}_{y}, \vec{e}_{z}\right) \\ & \left(\vec{e}_{p}, \vec{e}_{\phi}, \vec{e}_{z}\right) \\ & \left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right) \end{aligned}$	for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system
$\left(h_{1}, h_{2}, h_{3}\right)$	represents represents represents	$\begin{aligned} & (1,1,1) \\ & (1, \rho, 1) \\ & (1, r, r \sin (\theta)) \end{aligned}$	for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system

