UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2017/2018
TITLE OF THE PAPER: COMPUTATIONAL PHYSICS I
COURSE NUMBER: PHY282
TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:

THERE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.

Answer all the questions from Section A and all the questions from Section B.
Marks for different sections of each question are shown in the right hand margin.

THE PAPER HAS 7 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Section A - Use a pen and paper to answer these questions

Question 1

(a) In simple words, what is an interpreted programming language?
(b) State two tasks that can be preferably done in MAPLE compared to complied languages such as Fortran or $\mathrm{C} / \mathrm{C}++$.
(c) Explain the difference between the following Maple input statements and functions:
(i) $>$ eq: $=2 * \mathrm{I}+10$; and $>$ eq: $=2 * \mathrm{I}+10$:
(ii) $>\operatorname{sqrt}(12)$; and $>$ evalf(sqrt(12),20);
(iii) dsolve() and fsolve()

Question 2

(a) What is meant by a differential equation and give an example of a law in physics that can be represented by a differential equation?
(b) Are the following equations linear or nonlinear?
(i) $d^{4} \theta(t) / d t^{4}+\tau \theta(t)=0$
(ii) $\dot{y}(t)=1 / y(t)$
(iii) $\ddot{x}(t)=-\omega_{0}^{2} x(t)+0.5 \cos (\omega t)$
(iv) $\dot{P}(t)=\alpha P(t)(1-P(t) / K)$
(c) The motion of a particle is described by the following differential equation

$$
\ddot{x}+\mu \dot{x}+x=0
$$

where $x(t)$ is the displacement and μ is a positive dimensionless coefficient of nonlinear friction. Discuss how you would decompose this equation a system of first order differential equations? How many initial value conditions are required to solve this equation.
[4 marks]

Question 3

(a) What is the value of C after the following statements have been executed?
$>$ with (LinearAlgebra);
$>A:=\operatorname{Matrix}([[5,6,7,8],[9,10,11,112],[13,14,15,16],[17,18,19,20]])$;
$>$ B: $=$ Matrix $(4,4,[3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])$
$>\mathrm{C}:=\mathrm{A}+\mathrm{B}$;
[2 marks]
(b) What values of x and y are given out after the following statements have been executed?
$x:=4 ; y:=-2$;
s:=x+y;
$x:=x+x / s$;
$\mathrm{s}:=\mathrm{x}+\mathrm{y}$;
$y:=y+x / s$;
(c) Translate the following expressions into Maple input statements
(i) $y^{2}-\frac{3}{\cos (\phi)}+\frac{7}{\cos ^{2}(\phi)}-12$
(ii) $1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\frac{1}{5^{3}}+\cdots+\frac{1}{100^{3}}$
(iii) $g(x)=\left\{\begin{array}{cc}x^{2} & x \leq 0 \\ \cos (x) & 0<x \leq 2 \pi \\ e^{-x} & 2 \pi<x\end{array}\right.$

Question 4

(a) The program below is supposed to convert the temperature of boiling water $\left(212{ }^{\circ} \mathrm{F}\right.$) from Fahrenheit to Celsius (${ }^{\circ} \mathrm{C}$) using the conversion formula

$$
C=\frac{5}{9}(f-32)
$$

but it does not produce the correct result. Discuss briefly what is the output of the program. Fix it such that the originally intended purpose is restored.
Fer_2_Cel:=proc (x)
C: $=5 / 9 * f-32$;
return C end proc:
Fer_2_Cel(212);
(b) Describe exactly but briefly what is the output of the program:
$>$ programX: $=\operatorname{proc}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
local r1,r2;
$\mathrm{r} 1:=(-\mathrm{b}+\mathrm{sqrt}(\mathrm{b} * * 2-4 * a * c)) /(2 * a)$
r2:=(-b-sqrt(b**2-4*a*c))/(2*a)
return r1,r2;
end proc;
$>$ programX $(1,2,3)$;
[3 marks]
(c) The function below is supposed to return the sum $\sum_{i=1}^{N}\left(i^{2}+1\right)$ given a positive integer N but it does not. Fix it such that the originally intended purpose is restored.
SuM: $=\operatorname{proc}(\mathrm{N})$
$\mathrm{x}:=0$;
for i from 0 to N do
$\mathrm{x}:=\mathrm{i} * 2+1$;
end do;
end proc;

Section B - Practical Part

Question 5

(a) The Maple program below is supposed to calculate the range of an ideal projectile given the launch angle θ (in degrees) and the initial speed $v 0$ using the formula

$$
R=\frac{v_{0}^{2} \sin (2 \theta)}{g}
$$

but it does not produce the correct result. Fix it such that the originally intended purpose is restored and plot Range ($\mathrm{T}, 15$) for $T=0 \ldots 80^{\circ}$

Range: =proc (T,v0)
local R, theta,g;
theta: $=\mathrm{T} / 180 * \mathrm{Pi}$;
$\mathrm{R}:=\mathrm{v} 0 * 2 * \sin (2) *$ theta/g;
end proc:
[10 marks]
(b) Consider an oscillatory potential

$$
V(r)=a \cos (r)+b \cos (2 r)-c r
$$

with $a=1.5, b=2$, and $c=0.5$.
(i) Plot $V(r)$ for $r=-12 \ldots 12$.
[5 marks]
(ii) Find the local maximum and the local minimum of $V(r)$ close to $r=0$.

Question 6

(a) Applying Kirchhoff's law to an electrical network leads to the following systems of 5 linear equations

$$
\begin{aligned}
1.5 i_{1}-2 i_{2}+i_{3}+3 i_{4}+0.5 i_{5} & =7.5 \\
3 i_{1}+i_{2}-i_{3}+4 i_{4}-3 i_{5} & =16 \\
2 i_{1}+6 i_{2}-3 i_{3}-i_{4}+3 i_{5} & =78 \\
5 i_{1}+2 i_{2}+4 i_{3}-2 i_{4}+6 i_{5} & =71 \\
-3 i_{1}+3 i_{2}+2 i_{3}+5 i_{4}+4 i_{5} & =54
\end{aligned}
$$

where $i_{1}, i_{2}, i_{3}, i_{4}$, and i_{5} are currents in Amperes. Determine these unknown values.
[10 marks]
(b) Consider the function

$$
S(N)=\sum_{x=1}^{N} \frac{1}{x}-\ln (N) .
$$

where N is a positive integer. Write a Maple procedure $S(N)$ that define this function. Plot $S(N)$ for $\mathrm{N}=10 \ldots 1000$ and show that for large N, this function converges to the value of the Euler constant $\gamma=0.577215664901532 \ldots$
[10 marks]

Question 7

A set of magnetically-coupled rotors with a velocity dependent damping move according to the equations:

$$
\begin{align*}
& \ddot{\phi}_{1}(t)=-a \sin \left(\phi_{2}(t)-\phi_{1}(t)\right)-b \dot{\phi}_{1}(t) \\
& \ddot{\phi}_{2}(t)=-a \sin \left(\phi_{1}(t)-\phi_{2}(t)\right)-b \dot{\phi}_{2}(t) \tag{1}
\end{align*}
$$

This system exhibits an intriguing oscillatory behavior, where the two rotors alternatively exchange angular velocity.
(a) Write a program that determines $\phi_{1}(t), \phi_{2}(t), \dot{\phi}_{1}(t)$ and $\dot{\phi}_{2}(t)$ for a system with the parameters $a=5.0, b=0.2$ and the initial conditions

$$
\phi_{1}(0)=0, \quad \phi_{2}(0)=1, \quad \dot{\phi}_{1}(0)=0, \quad \text { and } \quad \phi_{2}(0)=0
$$

NB: You may need to decompose the above equation into a system of two first order ODEs.
(b) Plot $\phi_{1}(t), \phi_{2}(t)$ versus time t on the same plot for $t=0 \ldots 20$.
(c) Plot $\dot{\phi}_{1}(t), \dot{\phi}_{2}(t)$ versus the time t on the same plot for $t=0 \ldots 20$ and confirm that the two rotors alternatively exchange angular velocity.
[4 marks]
(d) Is the total angular momentum conserved or not in this system?
[2 marks]

