UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

 MAIN EXAMINATION, DECEMBER 2017TITLE OF PAPER : ELECTRONICS 1
COURSE NUMBER : PHY 311
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : Answer FOUR (4) questions only.
: Each Question carries 25 Marks
: Marks for different Sections are shown in far Right margin.

THIS PAPER HAS 7 PAGES, INCLUDING THIS ONE.
DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

1. (a) What are semiconductor materials?
(b) Define energy gap of a semiconductor.
(c) Describe the dynamics of the formation of the depletion region.
(d) Sketch the charge density (ρ), electric field $(E)_{2}$ and electric potential (V) of a pn-junction.
(e) Describe the steps you would undertake to determine the conduction state of an ideal diode?
(f) The table below shows the I-V characteristics of a low voltage diode connected as shown in Figure 1.

Forward voltage (V)	0	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4
Forward current $(m A)$	0	1	5	28	65	120	165	240	330

Figure 1: Low voltage diode
(i) Draw the I-V characteristics of the diode.
(ii) Determine the current flowing in the diode.
(iii) Calculate the value of the load resistor R_{L}
(iv) Calculate the power dissipated in both the diode and R_{L}.

Figure 2
2. (a) Figure 2 shows the circuit diagram for a simple d.c. power supply.
(i) Explain the operation of the circuit with reference to the function of each component within the circuit.
(ii) Sketch the voltage across RLoad as a function of time showing its relationship to the secondary voltage from the transformer.
(iii) The transformer is connected to a 220 V rms mains supply at 50 Hz and has a step-down turns ratio of 10:1.Calculate the peak secondary voltage from the transformer.
(b) Consider the basic BJT inverter amplifier circuit in Figure 3 a .
(i) Sketch the transfer characteristics of the amplifier, indicating the operation regions, Q-Point, input signal and output signal.
(ii) What factor would lead the output signal to be clipped?

(a)

(b)
(c) The output characteristics of a typical BJT is shown in Fig 3b.
(i) Draw the load line for a power supply of $V_{C C}=8 \mathrm{~V}$ and collector resistor $R_{C}=1.14 k \Omega$.(Use the enlarged characteristics in Figure 7 on the last page.)
(ii) Choose an appropriate operating, point ôn the characteristics and estimate the Quiescent values of $T_{B}, V_{C E}$ and I_{C}.
3. (a) Consider an npn-transistor shown in Figure 4. Show that $\beta=\alpha /(1-\alpha)$, where $\alpha=I_{C} / I_{E}$ and $\beta=I_{C} / I_{B}$.

Figure 4: Biasing voltages of npn transistor
(b) Sketch the I-V characteristics of the above transistor, indicating the operating regimes.
(c) Briefly explain the operating regions mentioned in (b) above.
(d) Define the hybrid parameters of the transistor in Figure 4 in terms of the d.c. currents and voltages .
(e) Describe how you would determine the hybrid parameters of a bipolar transistor from the input and output characteristics of the transistor. [6]
(f) Draw the small-signal equivalent circuit of a bipolar transistor containing a current-dependent voltage source.
(g) A bipolar transistor with a forward current gain $\beta=100$ passes a collector current of 26 mA . Estimate the input resistance of the transistor.
4. (a) Consider the circuit of the basic common-emitter amplifier shown in Figure 5 .
(i) State the uses of C_{1} and C_{E}.
(ii) Why are the resistors R_{1} and R_{2} included in the circuit?
(b) In Figure $5 V_{C C}=12 V, I_{C}=2 m A$ and $V_{B E}=0.65 \mathrm{~V}$.

Figure 5: Common Emitter Amplifier
(i) Calculate R_{E} when 1/10th of the supply voltage appears across it.[4]
(ii) Calculate R_{L} when $V_{C E}=V_{C C} / 2$.
(iii) Calculate I_{B} given that $\beta=100$.
(iv) Determine the value of R_{2} when $I_{R_{2}}=10 I_{B}$.
(c) A Zener diode stabilizing circuit has an input voltage of 18 V and a diode current of 8 mA to give 10 V across a load resistor of 1200Ω. Calculate
(i) the value of the series resistor,
(ii) the diode current when the load resistor is 1000Ω.
5. (a) Sketch the structure and circuit symbol of an n-channel JFET.
(b) Draw the output characteristics of of an n-channel JFET and indicate the operating regions.
(c) Describe briefly the dynamics of operation in the regions mentioned in (b).
(d) If the drain current I_{D} is a function of $V_{D S}$ and $V_{G S}$, derive the smallsignal equation for I_{D} and draw the small-signal equivalent circuits for n -channel JFETs in terms of voltage dependent voltage source.
(e) Consider the N-channel MOSFET amplifier given in Figure 6 below. $I_{D S}=\frac{K}{2}\left(V_{G S}-V_{T}\right)^{2}, V_{D D}=5 V, R_{L}=2 k \Omega, K=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{T}=1 V$. You can ignore the r_{d} of the MOSFET. C_{C} is the input coupling capacitor and you can assume it is infinitely large.
(i) Write an expression for the transistor bias point $V_{G S Q}$ as a function of $V_{D D}, R_{a}$ and R_{b}.
(ii) Determine the required ratio R_{a} / R_{b} such that the MOSFET transconductance $g_{m}=1 m A / V$.
(iii) What is the voltage bias point of the output $V_{\text {out }}$?
(iv) Draw the small-signal model for the amplifier.

Figure 6: MOSFET amplifier

END

USED THE GRAPH BELOW TO ANSWER QUESTION 2 (b)

Figure 7

