UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

MAIN EXAMINATION, MAY 2018

TITLE OF PAPER : ELECTRONICS II

COURSE NUMBER : PHY 312
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : Answer FOUR (4) questions only.
: Each Question carries 25 Marks
: Marks for different Sections are shown in far Right margin.

THIS PAPER HAS 6 PAGES, INCLUDING THIS ONE.
DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

1. (a) What is a band pass filter?
(b) Show that the transfer function of a series $R L C$ band pass filter shown in Figure 1 may be written in the form

$$
H(j \omega)=\frac{K}{1+j Q\left(\frac{\omega}{\omega_{o}}-\frac{\omega_{o}}{\omega}\right)}
$$

and identify the symbols in the expression.

Figure 1: RLC band pass filter
(c) Given a RLC band pass filter with a lower cutoff frequency of 1 kHz and a bandwidth of 3 kHz , determine the center frequency and Q of this circuit.
(d) Sketch the circuit diagram of a terminated $R C$ low-pass filter and derive a general expression for the magnitude of its transfer function in terms the signal frequency f, and the cut-off frequency f_{c}.
2. (a) In automated control systems, the output is usually optimized by a feedback mechanism. Distinguish between positive feedback and negative feedback.
(b) State six advantages of negative voltage feedback in amplifiers.
(c) Using a circuit diagram, derive an expression for the gain A_{f} of an amplifier with feedback in terms of the gain, A, of the amplifier without feedback and the feedback factor k.

Figure 2: Differentiator Amplifier
(d) Figure 2 shows the circuit of differentiator amplifier.
i. Derive the expression for the output, $V_{o u t}$ in terms of the input V_{i}, R_{2} and C_{1}.
ii. Derive the expression for the voltage transfer function of the circuit, and mention the limitation of the amplifier.
iii. How would you modify the above circuit to overcome the limitation mentioned in (d) ii?
iv. Sketch $|H(j \omega)|$ with frequency and explain the behavior of the response function.
3. (a) Draw the circuit diagram of an op-amp and label all the terminals.
(b) List the most important assumptions of an ideal op-amp and briefly explain the consequences of each in simplifying the op-amp equivalent circuit.
(c) Figure 3 shows a difference amplifier circuit.
i. Show that

$$
V_{o}=\left(1+\frac{R_{f}}{R_{1}}\right)\left(\frac{R_{3}}{R_{2}+R_{3}}\right) V_{2}-\frac{R_{f}}{R_{1}} V_{1}
$$

ii. If $R_{1}=R_{2}=R_{3}=R_{f}$ and $V_{1}=-1.0 V(\mathrm{dc})$ and $V_{2}=0.1 \sin \omega t$, sketch V_{o} for at least one cycle.

Figure 3: Difference amplifier
(d) Use operational amplifiers and appropriate components to design a circuit that obeys the following relationship between the output voltage, v_{o} and the input voltage, v_{i} :
[11]

$$
v_{u}(t)=3 \times 10^{-4} \frac{d v_{i}}{d t}+10 \int v_{i} d t
$$

4. (a) State the Barkhausen condition necessary for oscillation to occur.
(b) A 3-stage RC Phase Shift Oscillator is required to produce an oscillation frequency of 6.5 kHz . If 1 nF capacitors are used in the feedback circuit,
i. calculate the value of the frequency determining resistors.
ii. calculate the value of the feedback resistor required to sustain the oscillations.
iii. draw the circuit diagram of the above oscillator.
(c) i. Sketch a labeled circuit diagram of a Wien-Bridge Oscillator which utilizes a two-stage amplifier
ii. Describe the priciple of operation of the Wien-Bridge oscillator.
iii. Calculate the frequency of oscillation of this oscillator when $R=10 \mathrm{k} \Omega$ and $C=0.01 \mu \mathrm{~F}$.
5. (a) Sketch the circuit diagram of a physical (not an ideal) operational integrator and label it.
(b) i. The input voltage of the operational integrator is $v_{i n}=0.5 \sin 100 t$. The capacitance of the feedback capacitor, $C_{f}=1.0 \mu \mathrm{~F}$ while the external resistance at the input of the integrator, $R_{\mathrm{in}}=100 \mathrm{k} \Omega$. Find the expression for $v_{\text {out }}$ as a function of time for the integrator.
ii. Sketch graphs of $v_{\text {in }}$ and $v_{\text {out }}$ as a function of time on the same axes. Label both axes.
(c) Define the following concepts as they pertain to amplifiers
i. Bandwidth
ii. Slew rate
(d) The circuit diagram in Figure 4 is a voltage-to-current converter with $I_{L}=g V_{i}$. Find the value of g and show that it is independent of R_{L}. (Assume OpAmp is ideal).

Figure 4: Voltage-to-Current Convertor

END

