UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2017/2018

TITLE OF PAPER	:	CLASSICAL MECHANICS
COURSE NUMBER	:	PHY322/P320
TIME ALLOWED	:	THREE HOURS
INSTRUCTIONS	:	ANSWER <u>ANY FOUR</u> OUT OF FIVE QUESTIONS. EACH QUESTION CARRIES <u>25</u> MARKS. MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS <u>EIGHT</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

PHY322/P320 CLASSICAL MECHANICS

Question one

(a) If *H* denotes the Hamiltonian function and *L* is the Lagrangian function, use the definition $H = \sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha} - L$ (where p_{α} and $q_{\alpha} (\alpha = 1, 2, \dots, n)$ are the generalized momenta and coordinates respectively, i.e., $H = H(q_1, \dots, q_n, p_1, \dots, p_n, t)$, $L = L(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t)$, $p_{\alpha} = \frac{\partial L}{\partial \dot{q}_{\alpha}}$ and $\dot{p}_{\alpha} = \frac{\partial L}{\partial q_{\alpha}}$) to show that (i) $\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}$ $\alpha = 1, 2, \dots, n$ (3 marks) (ii) $\dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$ $\alpha = 1, 2, \dots, n$ (3 marks)

(iii)
$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$
 (6 marks)

(b) The point of support of a simple pendulum of length b moves on a massless rim of radius a rotating with constant angular velocity ω as shown in the diagram below :

(i) Write down the Lagrangian of the above system in terms of θ and deduce that $L = \frac{m}{2} \left(a^2 \ \omega^2 + b^2 \ \dot{\theta}^2 + 2 \ a \ b \ \omega \ \dot{\theta} \sin(\theta - \omega t) \right) - m \ g \ (a \sin(\omega t) - b \cos(\theta))$ (7 marks)

(ii) Write down the equation of motion for θ and deduce that $\ddot{\theta} = \frac{\omega^2 a}{b} \cos(\theta - \omega t) - \frac{g}{b} \sin(\theta)$ (6 marks)

Question two

For a certain dynamical system the kinetic energy T and potential energy V are given by $T = \dot{q}_1^2 + 2 \dot{q}_1 \dot{q}_2 + 3 \dot{q}_2^2$

 $V = 4 q_1 q_2$

•

where q_1 , q_2 are the generalized coordinates.

(a) From the Lagrangian $L \equiv T - V$, find the momentum $p_1 \& p_2$ of the system. (2 marks)

(b) Use $H = \left(\sum_{\alpha=1}^{2} p_{\alpha} \dot{q}_{\alpha}\right) - L$ to find the Hamiltonian function of the system and

show that
$$H = \frac{1}{8} \left(3 p_1^2 - 2 p_1 p_2 + p_2^2 \right) + 4 q_1 q_2$$
 (10 marks)

(c) For the Hamiltonian given in (b), write down its Hamiltonian equations of motion.
 (4 marks)

(d) From the definition of the Poisson brackets, i.e., $[F,G] \equiv \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}} \right)$, evaluate $[q_1,H]$, $[q_2,H]$, $[p_1,H]$ and $[p_2,H]$. (8 marks)

(e) Compare the results obtained in (c) to those obtained in (d) and make a brief comment. (1 mark)

Question three

Two pendulums of equal lengths b and equal masses m are connected by a spring of force constant k as shown below. The spring is unstretched in the equilibrium position, i.e., $\theta_1 = 0$ and $\theta_2 = 0$.

(i) For small
$$\theta_1$$
 and θ_2 , i.e.,
 $\left(\sin(\theta_1) \approx \theta_1, \sin(\theta_2) \approx \theta_2, \cos(\theta_1) \approx 1 - \frac{\theta_1^2}{2} \text{ and } \cos(\theta_2) \approx 1 - \frac{\theta_2^2}{2}\right)$, show that the

Lagrangian for the system can be expressed as:

$$L = \frac{1}{2} m b^{2} \left(\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2}\right) - \frac{m g b}{2} \left(\theta_{1}^{2} + \theta_{2}^{2}\right) - \frac{k b^{2}}{2} \left(\theta_{1} - \theta_{2}\right)^{2}$$

where the zero gravitational potential is set at the equilibrium position. (6 marks)(ii) Write down the equations of motion and deduce that

$$\begin{cases} \ddot{\theta}_{1} = -\left(\frac{m \ g + k \ b}{m \ b}\right) \theta_{1} + \frac{k}{m} \ \theta_{2} \\ \ddot{\theta}_{2} = \frac{k}{m} \ \theta_{1} - \left(\frac{m \ g + k \ b}{m \ b}\right) \theta_{2} \end{cases}$$
(6 marks)

(iii) Set $\theta_1 = \hat{X}_1 e^{i\omega t}$ and $\theta_2 = \hat{X}_2 e^{i\omega t}$ (where \hat{X}_1 and \hat{X}_2 are constants) and deduce from the equations in (ii) the matrix equation $-\omega^2 X = A X$ where

$$X = \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \end{pmatrix} \text{ and } A = \begin{pmatrix} -\begin{pmatrix} m \ g + k \ b \\ m \end{pmatrix} & \frac{k \ b}{m} \\ \frac{k \ b}{m} & -\begin{pmatrix} m \ g + k \ b \\ m \end{pmatrix} \end{pmatrix}$$
(3 marks)

(iv) Find the eigenfrequencies ω of this coupled system and show that they are

$$\omega_1 = \sqrt{\frac{g}{b}} \qquad \& \qquad \omega_2 = \sqrt{\frac{m g + 2 k b}{m b}} \tag{6 marks}$$

(v) Find the eigenvectors for ω_1 and ω_2 respectively. (4 marks)

(a) A two-body system is depicted below

where $\vec{r}_1 \& \vec{r}_2$ are the position vectors of $m_1 \& m_2$ respectively. Define the center of mass of the system and show that the total kinetic energy of the system , i.e., $T = \frac{1}{2} m_1 \left(\dot{\vec{r}_1} \bullet \dot{\vec{r}_1} \right) + \frac{1}{2} m_2 \left(\dot{\vec{r}_2} \bullet \dot{\vec{r}_2} \right)$, can be reduced to $T = \frac{1}{2} \mu \left(\dot{\vec{r}} \bullet \dot{\vec{r}} \right) \left(where \quad \mu = \frac{m_1 m_2}{m_1 + m_2} \text{ is the reduced mass} \right)$ if the center of mass is chosen to be the origin. (1+6 marks)

(b) Starting from the law of conservation of angular momentum l, derive Kepler's third law, i.e., the relation between the period τ of a closed orbit in an attractive inverse square central force and the area A of the orbit. Show that

$$\tau = \frac{2 \mu}{l} A$$
 where μ is the reduced mass of the system. (7 marks)

- (c) If an earth satellite of 500 kg mass is having a pure tangential speed $v_{\theta} = 8,000$ m/s at its near-earth-point 600 km above the earth surface,
 - (i) calculate the values of l and E of this satellite, (3 marks)
 - (ii) calculate the values of the eccentricity, ε , and show that the orbit is an elliptical orbit. Also calculate its period. (6 marks)
 - (iii) determine the value of the v_{θ} at the same given near-earth-point such that the satellite orbit is a circular orbit, (2 marks)

(Hint:
$$E = \frac{1}{2} \mu v_{\theta}^2 - \frac{k}{r} \xrightarrow{circular orbit} - \frac{k}{2r}$$
)

Question five

(a) (i) Find the horizontal deflection d resulting from the Coriolis force $(-2 \ m \ \vec{\omega} \times \vec{v}_r)$ of a particle falling freely from a height h to the ground at a northern latitude λ and show that

$$d \approx \frac{1}{3}\omega\cos(\lambda)\sqrt{\frac{8h^3}{g}}$$

(11 marks)

(Hint: Chose \vec{e}_x due south , \vec{e}_y due east & \vec{e}_z upward on earth surface, then $\vec{a}_{eff} \approx -\vec{e}_z g - 2 \vec{\omega} \times \vec{v}_r$, $\vec{v}_r \approx \vec{e}_z (-gt)$, $\vec{\omega} = \vec{e}_x (-\omega \cos(\lambda)) + \vec{e}_z (\omega \sin(\lambda))$)

(ii) Given the values of
$$\lambda = 60^{\circ}$$
, $h = 100$ m and $\omega = 2\pi$ rad/day
(i.e., $\omega = 7.27 \times 10^{-5}$ rad/s), determine the value of the deviation distance d .
(2 marks)

(b) By proper choice of the body coordinate system for a well-shaped rigid body, its inertial tensor can be a diagonal matrix with I_1 , I_2 & I_3 diagonal elements. Its force-free pure-rotational motion obeys the following Euler's equations :

$$\begin{cases} (I_2 - I_3) \,\omega_2 \,\omega_3 - I_1 \,\dot{\omega}_1 = 0 & \dots & (1) \\ (I_3 - I_1) \,\omega_3 \,\omega_1 - I_2 \,\dot{\omega}_2 = 0 & \dots & (2) \\ (I_1 - I_2) \,\omega_1 \,\omega_2 - I_3 \,\dot{\omega}_3 = 0 & \dots & (3) \end{cases}$$

(i) In the case of $I_1 = I_2 \xrightarrow{set as} I_0 \& I_3 = 2 I_0$, deduce from the above Euler's equations that

$$\begin{cases} \omega_3 = const. \xrightarrow{set as} K & \dots & (4) \\ \dot{\omega}_1 = -K & \omega_2 & \dots & (5) \\ \dot{\omega}_2 = K & \omega_1 & \dots & (6) \end{cases}$$
(4 marks)

(ii) Deduce from eq. (5) and eq. (6) in (b)(i) that

$$\ddot{\omega}_1 = -K^2 \omega_1 \quad \dots \quad (7)$$
(2 marks)

- (iii) By direct substitution, show that $\omega_1 = A \cos(K t + B)$ is the solution to eq. (7) with A & B constant values linking to the given initial value of $\vec{\omega}$. (2 marks)
- (iv) Substitute $\omega_1 = A \cos(K t + B)$ into eq.(5) and deduce that $\omega_2 = A \sin(K t + B)$. (2 marks)
- (v) Show that the magnitude of $\vec{\omega}$ is constant for all time t. (2 marks)

$$\begin{split} V &= -\int \vec{F} \cdot d\vec{l} \quad and \; reversely \quad \vec{F} = -\vec{\nabla} \, V \\ L &= T - V = L(q_1, q_2, \cdots, q_n, \dot{q}_1, \dot{q}_2, \cdots, \dot{q}_n, t) \\ p_{\alpha} &= \frac{\partial L}{\partial \dot{q}_{\alpha}} \quad and \quad \dot{p}_{\alpha} = \frac{\partial L}{\partial q_{\alpha}} \\ H &= \sum_{\alpha=1}^{n} (p_{\alpha} \, \dot{q}_{\alpha}) - L = H(q_1, q_2, \cdots, q_n, \dot{q}_1, \dot{q}_2, \cdots, \dot{q}_n, t) \\ \dot{q}_{\alpha} &= \frac{\partial H}{\partial p_{\alpha}} \quad and \quad \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}} \\ [u,v] &= \sum_{\alpha=1}^{n} \left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}} - \frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}} \right) \\ G &= 6.673 \times 10^{-11} \quad \frac{N \, m^2}{kg^2} \\ radius \; of \; earth \quad r_E = 6.4 \times 10^6 \; m \\ mass \; of \; earth \quad m_E = 6 \times 10^{24} \; kg \\ earth \; attractive \; potential = -\frac{k}{r} \quad where \quad k = G \; m \; m_E \\ \varepsilon &= \sqrt{1 + \frac{2 \; E \; l^2}{\mu \; k^2}} \quad \left\{ (\varepsilon = 0, \; circle), \left(0 < \varepsilon < 1, \; ellipse \right), \left(\varepsilon = 1, \; parabola \right), \cdots \right\} \\ \mu &= \frac{m_1 \; m_2}{m_1 + m_2} \approx m_1 \quad if \quad m_2 \gg m_1 \\ For \; elliptical \; orbit, i.e., \; 0 < \varepsilon < 1, \; then \begin{cases} semi - major \; a = \frac{k}{2 \; |E|} \\ semi - \min or \; b = \frac{l}{\sqrt{2 \; \mu |E|}} \\ period \; \tau = \frac{2 \; \mu}{l} (\pi \; a \; b) \\ r_{\min} = a \left(1 - \varepsilon\right) \; \& r_{\max} = a \left(1 + \varepsilon\right) \end{cases}$$

for plane polar (r, θ) system with unit vectors $(\vec{e}_r, \vec{e}_{\theta})$, we have

$$\begin{cases} \vec{v} = \vec{e}_r \ \dot{r} + \vec{e}_\theta \ r \ \dot{\theta} \\ \vec{a} = \vec{e}_r \ \left(\vec{r} - r \ \dot{\theta}^2 \right) + \vec{e}_\theta \left(2 \ \dot{r} \ \dot{\theta} + r \ \ddot{\theta} \right) \\ \vec{\nabla} \ f = \vec{e}_r \ \frac{\partial f}{\partial r} + \vec{e}_\theta \ \frac{1}{r} \frac{\partial f}{\partial \theta} \end{cases}$$

s

$$I = \begin{pmatrix} \sum_{\alpha} m_{\alpha} \left(x_{\alpha,2}^{2} + x_{\alpha,3}^{2} \right) & -\sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,2} & -\sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,1} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^{2} + x_{\alpha,3}^{2} \right) & -\sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,1} & -\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,2} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^{2} + x_{\alpha,2}^{2} \right) \end{pmatrix}$$

$$\vec{F}_{eff} = \vec{F} - m \, \vec{\vec{R}}_f - m \, \vec{\vec{\omega}} \times \vec{r} - m \, \vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2 \, m \, \vec{\omega} \times \vec{v}_r \qquad \text{where}$$
$$\vec{r}' = \vec{R} + \vec{r} \quad and$$
$$\vec{r}' \quad refers \ to \quad fixed (inertial \ system)$$

- \vec{r} refers to rotatinal (non inertial system) rotates with $\vec{\omega}$ to \vec{r} ' system
- \vec{R} from the origin of \vec{r} ' to the origin of \vec{r}

$$\vec{v}_r = \left(\frac{d\,\vec{r}}{d\,t}\right)_r$$

2