## FACULTY OF SCIENCE

## DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2017/2018

TITLE OF PAPER : CLASSICAL MECHANICS

COURSE NUMBER : PHY322/P320

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES $\underline{25}$ MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS EIGHT PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

## Question one

(a) If $H$ denotes the Hamiltonian function and $L$ is the Lagrangian function, use the definition $H=\sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha}-L$ (where $p_{\alpha}$ and $q_{\alpha}(\alpha=1,2, \cdots, n)$ are the generalized momenta and coordinates respectively, i.e., $H=H\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}, t\right)$, $L=L\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}, t\right) \quad, \quad p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}}$ and $\left.\dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}\right)$ to show that
(i) $\quad \dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad \alpha=1,2, \cdots, n$
(3 marks)
(ii) $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}} \quad \alpha=1,2, \cdots, n$
(3 marks)
(iii) $\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}$
(b) The point of support of a simple pendulum of length $b$ moves on a massless rim of radius $a$ rotating with constant angular velocity $\omega$ as shown in the diagram below:

(i) Write down the Lagrangian of the above system in terms of $\theta$ and deduce that

$$
L=\frac{m}{2}\left(a^{2} \omega^{2}+b^{2} \dot{\theta}^{2}+2 a b \omega \dot{\theta} \sin (\theta-\omega t)\right)-m g(a \sin (\omega t)-b \cos (\theta))
$$

( 7 marks)
(ii) Write down the equation of motion for $\theta$ and deduce that

$$
\begin{equation*}
\ddot{\theta}=\frac{\omega^{2} a}{b} \cos (\theta-\omega t)-\frac{g}{b} \sin (\theta) \tag{6marks}
\end{equation*}
$$

## Question two

For a certain dynamical system the kinetic energy $T$ and potential energy $V$ are given by $T=\dot{q}_{1}^{2}+2 \dot{q}_{1} \dot{q}_{2}+3 \dot{q}_{2}^{2}$ $V=4 q_{1} q_{2}$
where $q_{1}, q_{2}$ are the generalized coordinates.
(a) From the Lagrangian $L \equiv T-V$, find the momentum $p_{1} \& p_{2}$ of the system.
( 2 marks)
(b) Use $H \equiv\left(\sum_{\alpha=1}^{2} p_{\alpha} \dot{q}_{\alpha}\right)-L$ to find the Hamiltonian function of the system and show that $H=\frac{1}{8}\left(3 p_{1}^{2}-2 p_{1} p_{2}+p_{2}{ }^{2}\right)+4 q_{1} q_{2}$
( 10 marks )
(c) For the Hamiltonian given in (b), write down its Hamiltonian equations of motion.
(d) From the definition of the Poisson brackets , i.e., $[F, G] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}}-\frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}}\right)$, evaluate $\left[q_{1}, H\right],\left[q_{2}, H\right],\left[p_{1}, H\right]$ and $\left[p_{2}, H\right]$
( 8 marks)
(e) Compare the results obtained in (c) to those obtained in (d) and make a brief comment.

## Question three

Two pendulums of equal lengths $b$ and equal masses $m$ are connected by a spring of force constant $k$ as shown below. The spring is unstretched in the equilibrium position, i.e., $\theta_{1}=0$ and $\theta_{2}=0$.

(i) For small $\theta_{1}$ and $\theta_{2}$, i.e.,
$\left(\sin \left(\theta_{1}\right) \approx \theta_{1}, \sin \left(\theta_{2}\right) \approx \theta_{2}, \cos \left(\theta_{1}\right) \approx 1-\frac{\theta_{1}^{2}}{2}\right.$ and $\left.\cos \left(\theta_{2}\right) \approx 1-\frac{\theta_{2}^{2}}{2}\right)$, show that the
Lagrangian for the system can be expressed as:

$$
L=\frac{1}{2} m b^{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right)-\frac{m g b}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right)-\frac{k b^{2}}{2}\left(\theta_{1}-\theta_{2}\right)^{2}
$$

where the zero gravitational potential is set at the equilibrium position. ( 6 marks )
(ii) Write down the equations of motion and deduce that

$$
\left\{\begin{array}{l}
\ddot{\theta}_{1}=-\left(\frac{m g+k b}{m b}\right) \theta_{1}+\frac{k}{m} \theta_{2}  \tag{6marks}\\
\ddot{\theta}_{2}=\frac{k}{m} \theta_{1}-\left(\frac{m g+k b}{m b}\right) \theta_{2}
\end{array}\right.
$$

(iii) Set $\theta_{1}=\hat{X}_{1} e^{i \omega t}$ and $\theta_{2}=\hat{X}_{2} e^{i \omega t}$ (where $\hat{X}_{1}$ and $\hat{X}_{2}$ are constants) and deduce from the equations in (ii) the matrix equation $-\omega^{2} X=A X \quad$ where

$$
X=\binom{\hat{X}_{1}}{\hat{X}_{2}} \text { and } A=\left(\begin{array}{cc}
-\left(\frac{m g+k b}{m}\right) & \frac{k b}{m}  \tag{3marks}\\
\frac{k b}{m} & -\left(\frac{m g+k b}{m}\right)
\end{array}\right)
$$

(iv) Find the eigenfrequencies $\omega$ of this coupled system and show that they are

$$
\begin{equation*}
\omega_{1}=\sqrt{\frac{g}{b}} \quad \& \quad \omega_{2}=\sqrt{\frac{m g+2 k b}{m b}} \tag{6marks}
\end{equation*}
$$

(v) Find the eigenvectors for $\omega_{1}$ and $\omega_{2}$ respectively.

## Question four

(a) A two-body system is depicted below

where $\quad \vec{r}_{1} \& \vec{r}_{2}$ are the position vectors of $\quad m_{1} \& m_{2}$ respectively.
Define the center of mass of the system and show that the total kinetic energy of the system, i.e., $\quad \dot{T}=\frac{1}{2} m_{1}\left(\dot{\vec{r}}_{1} \bullet \dot{\vec{r}}_{1}\right)+\frac{1}{2} m_{2}\left(\dot{\vec{r}}_{2} \bullet \dot{\vec{r}}_{2}\right)$, can be reduced to $T=\frac{1}{2} \mu(\dot{\vec{r}} \bullet \dot{\vec{r}}) \quad\left(\right.$ where $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass $)$ if the center of mass is chosen to be the origin.
( $1+6$ marks )
(b) Starting from the law of conservation of angular momentum $l$, derive Kepler's third law, i.e., the relation between the period $\tau$ of a closed orbit in an attractive inverse square central force and the area $A$ of the orbit. Show that $\tau=\frac{2 \mu}{l} A \quad$ where $\mu$ is the reduced mass of the system.
(c) If an earth satellite of 500 kg mass is having a pure tangential speed $v_{\theta}=8,000 \mathrm{~m} / \mathrm{s}$ at its near-earth-point 600 km above the earth surface,
(i) calculate the values of $l$ and $E$ of this satellite, ( $\mathbf{3}$ marks)
(ii) calculate the values of the eccentricity, $\varepsilon$, and show that the orbit is an elliptical. orbit. Also calculate its period.
( 6 marks )
(iii) determine the value of the $v_{\theta}$ at the same given near-earth-point such that the satellite orbit is a circular orbit,
( 2 marks)
(Hint : $E=\frac{1}{2} \mu \nu_{\theta}^{2}-\frac{k}{r} \xrightarrow{\text { circular orbut }}-\frac{k}{2 r}$ )

## Question five

(a) (i) Find the horizontal deflection $d$ resulting from the Coriolis force $\left(-2 m \vec{\omega} \times \vec{v}_{r}\right)$ of a particle falling freely from a height $h$ to the ground at a northern latitude $\lambda$ and show that
$d \approx \frac{1}{3} \omega \cos (\lambda) \sqrt{\frac{8 h^{3}}{g}}$
(Hint: Chose $\vec{e}_{x}$ due south,$\vec{e}_{y}$ due east \& $\vec{e}_{=}$upward on earth surface, then $\left.\vec{a}_{e f f} \approx-\vec{e}_{=} g-2 \vec{\omega} \times \vec{v}_{r}, \vec{v}_{r} \approx \vec{e}_{=}(-g t), \vec{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\vec{e}_{=}(\omega \sin (\lambda))\right)$
(ii) Given the values of $\lambda=60^{\circ}, h=100 \mathrm{~m}$ and $\omega=2 \pi \mathrm{rad} /$ day
(i.e., $\omega=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}$ ), determine the value of the deviation distance $d$ ( 2 marks)
(b) By proper choice of the body coordinate system for a well-shaped rigid body, its inertial tensor can be a diagonal matrix with $I_{1}, I_{2} \& I_{3}$ diagonal elements. Its force-free pure-rotational motion obeys the following Euler's equations:
$\left\{\begin{array}{l}\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}-I_{1} \dot{\omega}_{1}=0 \\ \left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}-I_{2} \dot{\omega}_{2}=0 \\ \cdots \cdots\end{array}\right)$ (1)
(i) In the case of $I_{1}=I_{2} \xrightarrow{\text { set ass }} I_{0} \& I_{3}=2 I_{0}$, deduce from the above Euler's equations that

$$
\left\{\begin{array}{lll}
\omega_{3}=\text { const. } \xrightarrow{\text { set ass }} K & \cdots \cdots & \text { (4) } \\
\dot{\omega}_{1}=-K \omega_{2} & \cdots \cdots & (5) \\
\dot{\omega}_{2}=K \omega_{1} & \cdots \cdots & (6)
\end{array}\right.
$$

(4 marks)
(ii) Deduce from eq. (5) and eq.(6) in (b)(i) that

$$
\begin{equation*}
\ddot{\omega}_{1}=-K^{2} \omega_{1} \tag{7}
\end{equation*}
$$

( 2 marks)
(iii) By direct substitution, show that $\omega_{1}=A \cos (K t+B)$ is the solution to eq.(7) with $A \& B$ constant values linking to the given initial value of $\vec{\omega}$. ( 2 marks )
(iv) Substitute $\omega_{1}=A \cos (K t+B)$ into eq.(5) and deduce that $\omega_{2}=A \sin (K t+B)$.
( 2 marks)
(v) Show that the magnitude of $\vec{\omega}$ is constant for all time $t$.
( 2 marks)

## Useful informations

$V=-\int \vec{F} \cdot d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r} \quad$ where $\quad k=G m_{b}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \quad\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $\quad m_{2} \gg m_{1}$
For elliptical orbit, i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{c}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-min or } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b) \\ r_{\min }=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)\end{array}\right.$
for plane polar $(r, \theta)$ system with unit vectors $\left(\vec{e}_{r}, \vec{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\vec{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \vec{a}=\vec{e}_{r}\left(\ddot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$

## Useful informations (continued)

$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha}^{2} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$.
$\vec{F}_{c f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\bar{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
$\vec{r}^{\prime}$ refers to fixed(inertial system)
$\vec{r}$ refers to rotatinal(non-inertial system) rotates with $\vec{\omega}$ to $\vec{r}^{\prime}$ system
$\vec{R}$ from the origin of $\vec{r}$ ' to the origin of $\vec{r}$
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

