UNIVERSITY OF SWAZILAND
 FACULTY OF SOCIAL SCIENCES
 DEPARTMENT OF ECONOMICS
 MAIN EXAMINATION 2016/2017

TITLE OF PAPER	$:$	MATHEMATICS FOR ECONOMISTS II
COURSE CODE	$:$	ECO 206
TIME ALLOWED	$:$	TWO (2) HOURS

INSTRUCTIONS :

1. ANSWER ANY FOUR (4) QUESTIONS IN THIS PAPER. QUESTIONS CARRY 25 MARKS EACH.
2. ONLY SCIENTIFIC NON-PROGRAMMABLE CALCULATORS ARE ALLOWED.
3. ROUND UP YOUR FINAL ANSWERS TO TWO (2) DECIMAL PLACES.
4. IF IT IS NOT SPECIFIED, USE $\alpha=0.05$ FOR STATISTICAL TESTS.
5. THE REQUIRED PROBABILITY TABLES ARE ATTACHED AT THE BACK OF QUESTION PAPER.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1

[25 MARKS]

An analyst monitored 10 sewing machine operators at a certain garment factory in Matsapha to determine how many shirts per day, each worker produced. The results are recorded as follows:

175	190	250	230	240	200	185	190	225	265

a) Find the average number of shirts produced a day?
b) What is the median number of shirts produced?
c) If you were required to produce a report describing the data on this experiment, which measure of central tendency would you use? Explain why.
[4 Marks]
d) What proportion of the machine operators lie within two (2) standard deviations of the mean number of shirts produced?
[8. Marks]
e) Does this proportion you obtained in (d) above agree with the proportions given by Tchebysheff's theorem?
[4 Marks]

QUESTION 2

[25 MARKS]
a) Distinguish between mutually exclusive events and independent events.
[6 Marks]
b) Define Conditional Probability.
c) In a certain undergraduate economics class, 15% of the students are considered to be at a high risk of re-sitting the course, based on their test scores. Three (3) students are selected at random from this class, what is the probability that exactly two (2) of the three students chosen are at high risk of re-sitting the course?
d) If additionally we know that 51% of all the students are female, and that 12% of the females are at a high risk of a re-sit. If a student is selected at random, what is the probability that they are a female who is considered to be at a high risk for a re-sit?
[8 Marks]

QUESTION 3

[25 MARKS]

A street vendor in the Manzini Market packs tomatoes in small plastic bags. However, since the tomatoes are not equal in sizes, the weight of each packed plastic bag varies. The weights of the packed tomatoes is normally distributed with a mean of 1 Kg and a standard deviation of 0.15 Kg .
a) What proportion of the packets will weigh more than 1 Kg ?
b) What proportion of the packets will weigh between 0.95 Kg and 1.05 Kg ? [6 Marks]
c) What is the probability that a randomly selected packet of tomatoes will weigh less than 0.80 Kg ?
[6 Marks]
d) If you were to select a packet at random and you found that it weighs 1.45 Kg , would this be a usual or unusual occurrence? Justify your answer.
[6 Marks]

QUESTION 4

a) Describe what is a p-value.
b) In a survey conducted by the Ministry of Health, 9% of parents describe their children as being overweight. However, results from another study conducted by researchers at the Faculty of Consumer Sciences in Luyengo claim that obesity levels in children are at least 15%. Suppose that you randomly sample 750 parents ($n=750$), and observe that 68 of the parents describe their children as overweight.
i. Formulate and test the hypothesis that the proportion of parents who describe their children as overweight is less than the actual proportion reported by the Luyengo researchers.
ii. Use the p-value from the test to come up with a conclusion.

QUESTION 5

[25 MARKS]
a) List the five (5) components involved in a statistical test.
b) Distinguish between Type I and Type II Errors in a statistical test.
c) Two diet programs designed for individuals aged between $20-30$ years are compared. The following sample data were for the two (2) diets were obtained

	Sample Size (n)	Sample Mean (\bar{x})	Sample Variance $\left(\boldsymbol{s}^{\mathbf{2}}\right)$
Diet 1	40	10	4.3
Diet 2	40	8	5.7

Do the data provide sufficient evidence to suggest that Diet 1 produces a greater mean weight loss than Diet 2?
[14 Marks]

C Standard Normal Distribution

Numerical entries represent the probability that a standard normal random variable is between 0 and z where $z=\frac{x-\mu}{\sigma}$.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0,0	10, 0 000	0.004	0.8080	0.012	0.11	0.0199	0.02	0.027	0.0319	0.03599
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0,2.2	\%0.0793	0.0832	00087	0,09	80	008	01122	0.1064	0.1103	0.141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.55	11	0.126	0.16	0.7	0.1736	0.172	0,1808	0.18	15
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
\% 0.6	0,225	0.22	0,232	0.2	0.2	0.24	0.245	0.24	0.2517	0.2549 䜌
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2681	0.29	0.293	0.206	0.2295	0.302	0.30	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
10	03413	9,343	,	0.348	0.3508	0.3531	0.3554	0.357	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	03	0.386	0,3888	03907	0.3925	0.394	0.3962	0.39	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
14	04119	0.4207	04222	04236	0.42	0.42 F	0.4279	0.42	0.4306	0.4319 \%
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
116	80.4452	0.44	04474	04484	. 24	0.45	0.4515	0.452	0.4535	0.4545 .
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4516	0.4625	0.4633
18	0	0.464		046	0.	0.4678		0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
20,	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
21	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	048868	0487	0,4875	04878	0.4881	0.4884	0.4887	0.4890
23	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
等24	0.4918	0.4920	0		a	0,4299	0.20	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
\% 26	0,4953	,	,	0.492	0.45	0.4980	049	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
	04974	04975	0.4976	0.4977	0,497	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
\% 30\%	0.49874	0.4987	0,4987	0.4	0.4	0.4889	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
\%22	64993	04993	0.4994	0.4984	0.4994	+ 0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	04997	0,499	0.4997	04997	0.4997	0.499	0.4997	0.49

D Critical Values of \boldsymbol{t}

