UNIVERSITY OF SWAZILAND

FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

SUPPLEMENTARY EXAMINATION 2016/2017

TITLE OF PAPER	$:$	MATHEMATICS FOR ECONOMISTS II
COURSE CODE	$:$	ECO 206
TIME ALLOWED	$:$	TWO (2) HOURS

INSTRUCTIONS :

1. ANSWER ANY FOUR (4). QUESTIONS IN THIS PAPER. QUESTIONS CARRY 25 MARKS EACH.
2. ONLY SCIENTIFIC NON-PROGRAMMABLE CALCULATORS ARE ALLOWED.
3. ROUND UP YOUR FINAL ANSWERS TO TWO (2) DECIMAL PLACES.
4. IF IT IS NOT SPECIFIED, USE $\alpha=0.05$ FOR STATISTICAL TESTS.
5. THE REQUIRED PROBABILITY TABLES ARE ATTACHED AT THE BACK OF QUESTION PAPER.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1

a) Distinguish between mutually exclusive events and independent events.
b) Define Conditional Probability.
c) In a certain citrus canning factory in Malkerns, 8% of the product is considered defective, based on samples taken by the company laboratory. If three (3) cans are selected at random, what is the probability that exactly one (1) of the cans chosen is defective?
[8 Marks]
d) If additionally we know that 40% of the canned products pass through machine 2 , and that 12% of the cans through this machine are defective. If a can is selected at random, what is the probability that it was closed by machine 2 and it is defective? [8 Marks]

QUESTION 2

[25 MARKS]

Records from The Clinic Group of hospitals show that 30\% of all patients admitted in their hospitals fail to settle their bill, and eventually these bills have to be forgiven. Suppose four (4) new patients $(n=4)$ represent a random selection from the large set of prospective patients served by the hospitals, find the probabilities:
a) All the patient's bills will have to be forgiven.
b) One (1) will have to be forgiven.
c) None will have to be forgiven.
d) Suppose that over a one year period, the hospitals admit 2000 patients,
i. What is the mean number of debts that have to be forgiven?
ii. What is the variance and standard deviation of forgiven debts?

QUESTION 3

A price analyst for a certain marketing firm in Mbabane samples the price of different brands of $100 \% 1$ Litre fruit juices at various large supermarkets. The figures obtained in Emalangeni, are as follows:
9.90
$19.20 \quad 12.30 \quad 8.50$
6.00
$6.50 \quad 5.30$
$14.10 \quad 11.20 \quad 6.30$
6.70
6.90
6.00
6.00
6.60
a) Find the average price for the different brands of fruit juices?
b) What is the median price for the different brands of fruit juices?
c) If you were required to produce a report describing the data on this experiment, which measure of central tendency would you use? Explain why.
[4 Marks]
d) What proportion of the fruit juice prices lie within two (2) standard deviations of the mean price?
e) Does this proportion you obtained in (d) above agree with the proportions given by Tchebysheff's theorem?
[4 Marks]

QUESTION 4

[25 MARKS]
a) Distinguish between Type I and Type II Errors in a statistical test.
b) List the five (5) components involved in a statistical test.
c) Independent random samples of $n_{1}=50$ and $n_{2}=60$ observations were selected from populations 1 and 2, respectively. The sample data were for the two (2) populations are computed and given below:

	Sample Size (n)	Sample Mean $(\overline{\boldsymbol{x}})$	Sample Variance $\left(\boldsymbol{s}^{\mathbf{2}}\right)$
Population 1	50	100.4	0.8
Population 2	60	96.2	1.3

Find the 95% confidence interval for the difference in population means and interpret the interval.
[14 Marks]

QUESTION 5

[25 MARKS]
a) Describe what is a p-value.
b) The Government of Swaziland is in the process of resuscitating the national airline, Swazi Airways. Suppose that for the Sikhuphe - Johannesburg route to be viable, flights need at least 60% occupancy rate. If a sample of 120 flights in this route is taken and it yields an average flight occupancy of 58% with a standard deviation of 11%. Using a 5% significance level, determine whether the Sikhuphe - Johannesburg flight is viable?
[15 Marks]
c) Use the p-value from the test in (b) above and see whether you reach the same conclusion.
[5 Marks]

Standard Normal Distribution

Numerical entries represent the probability that a standard normal random variable is between 0 and z where $z=\frac{x-\mu}{\sigma}$.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
000	dope0	010040	0.9080	0.120	0.0180	00199	00239	0.0279	0.03	0.9359
0.1	0.0398	0.0438	0.0478	0.0517	0.055	0.0596	0.0636	0.0675	0.0714	0.0753
002	3		-	009	808	0.0	0	207164	0.1	01141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
5049	0.1554	0159	016828.	0.166	0.17	0.1	0.172	0188	0.1844	01879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
\% 8	,602257	02291	0.2324	0.2357	023889	0.2422	0.2454	0.2486	$0: 2517$	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
408	W0.2831	02980	2,2999	0.296	02295	0.3023	$0,365{ }^{\circ}$	03078	0.3106	0.3138
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
10	03343	0.3438	0346	0.3465	0,3508	03531	0.3554	0.357	03599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
4, 12	Q0a849	603869	03688	0.3907	0.3925	0.3944	0.3962	0.3980	03997	04015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
147	04192	04207	04222	0423	04251	0.4265	04279	0.429	04300	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
W16	- 0.4452	*	04474	04	044485	0	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
118	- ${ }^{\text {aka }}$	0.9649	6.4856	0,4664	0.4671	0.4678	,	0.4693	04699	04706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
20	- 0.4772	04778	0.4783	0.4788	0.4793	0.4788	04803	0.4808	0.4812	04817
21	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
22.	- 04861	-04864	04868	0.487	04875	04878	0.4887	0.48	0.4887	0.4890
23	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
, 24	0.4018	0,4920	04922	0.4925	0.4927	04929	0.4931	0.4932	0.4934	$0: 4936$
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
3260				0,485	,	4460		049	0.4483	4.964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
288\%	609974	1803975	049	04977	0.4977	0.4978	04979	0.4979	0.4980	04981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
W90\%	Wbutab7	0:4987	0.4	+ 0	0.49	0	\% 048	049	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
822	Wh4993.	0.4993	04994	+0.4994	204994	- 44994	0.4994	0.4995	0.4995	04995
3.3	0.4995	0.4995	0.4995	0.4996	0.4998	0.4996	0.4996	0.4996	0.4996	0.4997
34	W, 0.4997	0.4997	04497	04997	04997	04997	0.49	0.4997	0.4997	0.4998

D Critical Values of t

