# UNIVERSITY OF SWAZILAND FACULTY OF SOCIAL SCIENCES DEPARTMENT OF ECONOMICS SUPPLEMENTARY EXAMINATION 2016/2017

| TITLE OF PAPER | : | MATHEMATICS FOR ECONOMISTS II |
|----------------|---|-------------------------------|
| COURSE CODE    | : | ECO 206                       |
| TIME ALLOWED   | : | TWO (2) HOURS                 |

#### **INSTRUCTIONS** :

- 1. ANSWER ANY FOUR (4) QUESTIONS IN THIS PAPER. QUESTIONS CARRY 25 MARKS EACH.
- 2. ONLY SCIENTIFIC NON-PROGRAMMABLE CALCULATORS ARE ALLOWED.
- **3.** ROUND UP YOUR FINAL ANSWERS TO TWO (2) DECIMAL PLACES.
- 4. IF IT IS NOT SPECIFIED, USE  $\alpha = 0.05$  FOR STATISTICAL TESTS.
- 5. THE REQUIRED PROBABILITY TABLES ARE ATTACHED AT THE BACK OF QUESTION PAPER.

#### THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

1

#### **QUESTION 1**

#### [25 MARKS]

- a) Distinguish between mutually exclusive events and independent events. [6 Marks]
- b) Define Conditional Probability.
- c) In a certain citrus canning factory in Malkerns, 8% of the product is considered defective, based on samples taken by the company laboratory. If three (3) cans are selected at random, what is the probability that **exactly one (1)** of the cans chosen is defective?

[8 Marks]

[3 Marks]

d) If additionally we know that 40% of the canned products pass through machine 2, and that 12% of the cans through this machine are defective. If a can is selected at random, what is the probability that it was closed by machine 2 and it is defective? [8 Marks]

#### **QUESTION 2**

#### [25 MARKS]

Records from The Clinic Group of hospitals show that 30% of all patients admitted in their hospitals fail to settle their bill, and eventually these bills have to be forgiven. Suppose four (4) new patients (n = 4) represent a random selection from the large set of prospective patients served by the hospitals, find the probabilities:

| a) | All th | e patient's bills will have to be forgiven.                         | [7 Marks] |
|----|--------|---------------------------------------------------------------------|-----------|
| b) | One (  | 1) will have to be forgiven.                                        | [5 Marks] |
| c) | None   | will have to be forgiven.                                           | [5 Marks] |
| d) | Suppo  | ose that over a one year period, the hospitals admit 2000 patients, |           |
|    | i.     | What is the mean number of debts that have to be forgiven?          | [3 Marks] |
|    | ii.    | What is the variance and standard deviation of forgiven debts?      | [5 Marks] |

#### **QUESTION 3**

#### [25 MARKS]

A price analyst for a certain marketing firm in Mbabane samples the price of different brands of 100% 1 *Litre* fruit juices at various large supermarkets. The figures obtained in Emalangeni, are as follows:

 9.90
 19.20
 12.30
 8.50
 6.50
 5.30
 14.10
 11.20
 6.30
 6.70
 6.90
 6.00

 6.00
 6.00
 6.60

- a) Find the average price for the different brands of fruit juices? [4 Marks]
- b) What is the median price for the different brands of fruit juices? [5 Marks]
- c) If you were required to produce a report describing the data on this experiment, which measure of central tendency would you use? Explain why.
   [4 Marks]
- d) What proportion of the fruit juice prices lie within two (2) standard deviations of the mean price?
   [8 Marks]
- e) Does this proportion you obtained in (d) above agree with the proportions given by Tchebysheff's theorem?
   [4 Marks]

#### **QUESTION 4**

#### [25 MARKS]

- a) Distinguish between Type I and Type II Errors in a statistical test. [6 Marks]
- b) List the five (5) components involved in a statistical test. [5 Marks]
- c) Independent random samples of  $n_1 = 50$  and  $n_2 = 60$  observations were selected from populations 1 and 2, respectively. The sample data were for the two (2) populations are computed and given below:

|              | Sample Size $(n)$ | Sample Mean $(\overline{x})$ | Sample Variance $(s^2)$ |
|--------------|-------------------|------------------------------|-------------------------|
| Population 1 | 50                | 100.4                        | 0.8                     |
| Population 2 | 60                | 96.2                         | 1.3                     |
|              |                   |                              |                         |

Find the 95% confidence interval for the difference in population means and interpret the interval. [14 Marks]

#### **QUESTION 5**

#### [25 MARKS]

- a) Describe what is a *p*-value.
- b) The Government of Swaziland is in the process of resuscitating the national airline, Swazi Airways. Suppose that for the Sikhuphe – Johannesburg route to be viable, flights need at least 60% occupancy rate. If a sample of 120 flights in this route is taken and it yields an average flight occupancy of 58% with a standard deviation of 11%. Using a 5% significance level, determine whether the Sikhuphe – Johannesburg flight is viable?

[15 Marks]

c) Use the *p*-value from the test in (b) above and see whether you reach the same conclusion. [5 Marks]

[5 Marks]

### **C** Standard Normal Distribution

Numerical entries represent the probability that a standard normal random variable

is between 0 and z where  $z = \frac{x - \mu}{\sigma}$ .



| z     | 0.00     | 0.01    | 0.02   | 0.03     | 0.04     | 0.05    | 0.06   | 0.07    | 0.08   | 0.09    |
|-------|----------|---------|--------|----------|----------|---------|--------|---------|--------|---------|
| .0.0  | 00000    | 0:0040  | 0.0080 | 0.0120   |          | 0.0199  | 0.0239 | 0.0279  | 0:0319 | -0:0359 |
| 0.1   | 0.0398   | 0.0438  | 0.0478 | 0.0517   | 0.0557   | 0.0596  | 0.0636 | 0.0675  | 0.0714 | 0.0753  |
| 0,2   | 0,0793   | 0.0832  | 0.0871 |          | 0:0948   | 0,0987  | 0(1026 | 0.1064  | 0.1103 | 0.1141  |
| 0.3   | 0.1179   | 0.1217  | 0.1255 | 0.1293   | 0.1331   | 0.1368  | 0.1406 | 0.1443  | 0.1480 | 0.1517  |
| 0.4   | 0.1554   | 0:1591  | 0,1628 | 0.1664   | 0,1700   | .0.1736 | 0.1772 | .0:1808 | 0.1844 | .0.1879 |
| 0.5   | 0.1915   | 0.1950  | 0.1985 | 0.2019   | 0.2054   | 0.2088  | 0.2123 | 0.2157  | 0.2190 | 0.2224  |
| 0:6   | 0.2257   | 0:2291  | 0.2324 | 0.2357   | 0:2389   | 0:2422  | 0.2454 | 0:2486  | 0.2517 | 0.2549  |
| 0.7   | 0.2580   | 0.2611  | 0.2642 | 0.2673   | 0.2704   | 0.2734  | 0.2764 | 0.2794  | 0.2823 | 0.2852  |
| 0.8   | 0.2881   | 0,2910  | 0.2939 | 0.2967   | 0.2995   | -0,3023 | 0,3051 | 0.3078  | 0.3106 | 0,3133  |
| 0.9   | 0.3159   | 0.3186  | 0.3212 | 0.3238   | 0.3264   | 0.3289  | 0.3315 | 0.3340  | 0.3365 | 0.3389  |
| 1.0   | 0.3413   | 0.3438  | 0.3461 | 0.9485   | 0.3508   | 0.3531  | 0.3554 | 0.3577  | 0.3599 | 0.3621  |
| 1.1   | 0.3643   | 0.3665  | 0.3686 | 0.3708   | 0.3729   | 0.3749  | 0.3770 | 0.3790  | 0.3810 | 0.3830  |
| 12    | - 0.8849 | -0:3869 | 0.3888 | 0.8907   | 0.3925   | 0:3944  | 0.3962 | 0.9980  | 0.3997 | 0:4015  |
| 1.3   | 0.4032   | 0.4049  | 0.4066 | 0.4082   | 0.4099   | 0.4115  | 0.4131 | 0.4147  | 0.4162 | 0.4177  |
| 14    | 0.4192   | 0.4207  | 0:4222 | 0,4236   | 0:4251   | 0.4265  | 0.4279 | 0,4292  | 0:4306 | 0.4319  |
| 1.5   | 0.4332   | 0.4345  | 0.4357 | 0.4370   | 0.4382   | 0.4394  | 0.4406 | 0.4418  | 0.4429 | 0.4441  |
| 1.6   | 0.4452   | 0:4463  | 0.4474 | 0.4484   | 0,4495   | 0.4505  | 0.4515 | 0.4525  | 0.4535 | 0:4545  |
| 1.7   | 0.4554   | 0.4564  | 0.4573 | 0.4582   | 0.4591   | 0.4599  | 0.4608 | 0.4616  | 0.4625 | 0.4633  |
| 1:8   | 0.4641   | 0.4649  | 0.4656 | . 0.4664 | 0:4671   | 0.4678  | 0.4686 | 0.4693  | 0.4699 | 0.4706  |
| 1.9   | 0.4713   | 0.4719  | 0.4726 | 0.4732   | 0.4738   | 0.4744  | 0.4750 | 0.4756  | 0.4761 | 0.4767  |
| 2.0   | \$0.4772 | 0.4778  | 0:4783 | 0:4788   | -0.4793  | 0.4798  | 0.4803 | 0.4808  | 0.4812 | 0.4817  |
| 2.1   | 0.4821   | 0.4826  | 0.4830 | 0.4834   | 0.4838   | 0.4842  | 0.4846 | 0.4850  | 0.4854 | 0.4857  |
| 2.2   | 0.4861   | 0.4864  | 0.4868 | 0,4871   | 0,4875   | 0.4878  | 0.4881 | 0.4884  | 0.4887 | 0.4890  |
| 2.3   | 0.4893   | 0.4896  | 0.4898 | 0.4901   | 0.4904   | 0.4906  | 0.4909 | 0.4911  | 0.4913 | 0.4916  |
| 2.4   | 0:4918   | 0.4920  | 0.4922 | 0.4925   | . 0.4927 | 0.4929  | 0.4931 | 0.4932  | 0.4934 | 0.4936  |
| 2.5   | 0.4938   | 0.4940  | 0.4941 | 0.4943   | 0.4945   | 0.4946  | 0.4948 | 0.4949  | 0.4951 | 0.4952  |
| -12,6 | 0:4953   | 0.4955  | 0.4956 | 0.4957   | 0.4959   | 0.4960  | 0,4961 | 0.4962  | 0:4963 | 0.4964  |
| 2.7   | 0.4965   | 0.4966  | 0.4967 | 0.4968   | 0.4969   | 0.4970  | 0.4971 | 0.4972  | 0.4973 | 0.4974  |
| 2.8   | 0,4974   | 0:4975  | 0,4976 | 0.4977   | 0.4977   | 0.4978  | 0.4979 | 0.4979  | 0.4980 | .0.4981 |
| 2.9   | 0.4981   | 0.4982  | 0.4982 | 0.4983   | 0.4984   | 0.4984  | 0.4985 | 0.4985  | 0.4986 | 0.4986  |
| 3.0   | 0.4987   |         | 0.4987 | 0.4988 . | .0:4988  | 0 4989  | 0,4989 | 0.4989  | 0,4990 | 0:4990  |
| 3.1   | 0.4990   | 0.4991  | 0.4991 | 0.4991   | 0.4992   | 0.4992  | 0.4992 | 0.4992  | 0.4993 | 0.4993  |
| 3.2   | 0:4993   | 0:4993  | 0.4994 | 0.4994   | 10,4994  | 0:4994  | 0,4994 | 0.4995  | 0.4995 | 0.4995  |
| 3.3   | 0.4995   | 0.4995  | 0.4995 | 0.4996   | 0.4996   | 0.4996  | 0.4996 | 0.4996  | 0.4996 | 0.4997  |
| 3,4   | 0.4997   | 0.4997  | 0,4997 | 0,4997   | 0,4997   | 0.4997  | 0.4997 | 0.4997  | 0,4997 | 0.4998  |

### D

## Critical Values of t

|                                |                     |                                   | Area in One Tail                  |                           |                |
|--------------------------------|---------------------|-----------------------------------|-----------------------------------|---------------------------|----------------|
|                                | 0.100               | 0.050                             | 0.025                             | 0.010                     | 0.005          |
|                                |                     |                                   | Area in Two Tails                 |                           |                |
| dt .                           | 0.200               | 0.100                             | 0.060                             | 0.020                     | 0.010          |
| 1 .                            | 3.078               | 6.314                             | 12.706                            | 31.821                    | 63.657         |
| 2                              | 1.886               | 2.920                             | 4.303                             | 6.965                     | 9.925          |
| 3                              | 1.638               | 2.353                             | 3.182                             | 4.541                     | 5.841          |
|                                | 1.633               | 2.192                             | 2.776                             | 3.747                     | 4:804          |
| 5                              | 1.476               | 2.015                             | 2.571                             | 3.365                     | 4.032          |
| 8                              | 1.440               | 1.943                             | .2.447                            | 0 3.143                   | 3.707          |
| 7                              | 1.415               | 1.895                             | 2.365                             | 2.998                     | 3.499          |
|                                | 1.897               | 1.860                             | 2.306                             | 2,896                     | 3.365          |
| 9<br>********************      | 1.383               | 1.833                             | 2.262                             | 2.821                     | 3.250          |
| P10                            | r(s <b>1;3</b> 72   | 1.812                             |                                   | 2764                      | 3.169          |
| 11                             | 1.363               | 1.796                             | 2.201                             | 2.718                     | 3.106          |
| -12                            | 1,856               | 1.782                             | 2179                              | , 2.681                   | \$1.055        |
| 13<br>12703-5570626            | 1.350               | <b>1.771</b><br>1.535550054735253 | 2.160                             | 2.650                     | 3.012          |
|                                | 411845              | 1,761                             | 2,145                             | 2.624                     | 2.977          |
| 15                             | 1.341               | 1.753                             | 2.131                             | 2.602<br>*2.583           | 2.947<br>2:921 |
| 17                             | 1.333               | 1.748                             | 2.120-                            | nar stadio de la companya |                |
| 18                             | 1,330               | 1.740                             | 2.110<br>2.101                    | 2.567                     | 2.898<br>2.878 |
| 19<br>19                       | 1.328               | 1.729                             | 2.093                             | 2.539                     | 2.881          |
| 20                             | 1.325               | 1,725                             | 2,086                             | 2.528                     | 2:845          |
| 21                             | 1.323               | 1.721                             | 2.080                             | 2.518                     | 2.831          |
| 22                             | 1.821               | 1.717                             | 2.074                             | 2.508                     | 2.819          |
| 23                             | 1.319               | 1.714                             | 2.069                             | 2.500                     | 2.807          |
| 24                             | 31,318              | 1711                              | 2.064                             | 2,492                     | 2.797          |
| 25                             | 1.316               | 1.706                             | 2.060                             | 2.485                     | 2.787          |
| <b>28</b>                      | 1,316               | 1.706                             | 2.056                             | 2.479                     | 2,779          |
| 27                             | 1.314               | 1.703                             | 2.052                             | 2.473                     | 2.771          |
| 28                             | . 1,313             | 1,701                             | 2.048                             | 2.467                     | 2,763          |
| 29                             | 1.311               | 1.699                             | 2.045                             | 2.462                     | 2.758          |
| <b>30</b>                      | . <b>1310</b>       | 1,697                             | - 2.042                           | 2,457                     | 2.750          |
| <b>31</b>                      | 1.309               | 1.696                             | 2.040                             | 2.453                     | 2.744          |
| 32                             | 1.309               | 1,694                             | 2.037                             | 2.449                     | 2.738          |
| <b>34</b><br>Analogoan tairtea | 1.307               | 1.691                             | 2.032                             | 2.441                     | 2.728          |
| 36                             | 1.306               | 1.688                             | 2.028                             | 2,434                     | 2.719          |
| <b>38</b><br>                  | 1.304               | 1.686                             | 2.024                             | <b>2.429</b>              | 2.712          |
| <b></b>                        | 1,303               | 1.684                             | 2.021                             | 2.423                     | 2,704          |
| 45                             | 1.301               | 1.679                             | 2.014                             | 2.412                     | 2.690          |
| 55                             | 1,299               | 1.678<br>1.673                    | 2.009                             | 2.403<br>2.396            | 2.668          |
| 35<br>                         | 1.297               | 1.673                             | 2.004                             | 2.390                     | 2.660          |
| 70                             | 1.294               | 1.867                             | 1.994                             | 2.381                     | 2.848          |
| 80                             | 1,292               | 1:684                             | 1,990                             | 2.301                     | 2.639          |
| 90                             | 1.291               | 1.662                             | 1.987                             | 2.368                     | 2.632          |
| 400                            | 1,290               | 1.660                             | 1:984                             | 2.864                     | 2.526          |
| 120                            | 1.289               | 1.658                             | 1.980                             | 2.358                     | 2.617          |
| 200                            | 1,286               | 1.653                             | 1.972                             | 2,345                     | 2.601          |
| 300                            | 1.284               | 1.650                             | siase (12) Treasy<br><b>1.968</b> | 2.339                     | 2.592          |
| 400                            | 1.284               | 1.649                             | 1:966                             | 2.336                     | 2.588          |
| 500 <b>500</b>                 | 1.283               | 1.648                             | <ul> <li>1.965</li> </ul>         | 2.334                     | 2.586          |
| 750                            | 1.283               | . 1.647,                          | 1.963                             | 2.331                     | 2.582          |
| 1000                           | 1.282               | 1.646                             | 1.962                             | 2.330                     | 2.561          |
|                                | 1.282               | 1.645                             | 1.960                             | 2.326                     | 2.576          |
|                                | <ul> <li></li></ul> | point and the extension of the    |                                   | ·                         |                |



