UNIVERSITY OF SWAZILAND

FACULTY OF SOCIAL SCIENCE

DEPARTMENT OF ECONOMICS

MAIN EXAMINATION PAPER

DECEMBER 2017

PAPER TITLE: MATHEMATICS FOR ECONOMICS I

CODE : ECO205/ ECON 208

INSTRUCTIONS

1. ANSWER ANY FOUR QUESTIONS

2. ALL QUESTIONS CARRY EQUAL MARKS [25]

3. THIS IS A TWO HOUR PAPER

DO NOT OPEN THIS PAPER UNTIL YOU HAVE BEEN INSTRUCTED TO DO SO

Question 1

R S∷

(a) Let the interrelationship between the production of two industries R and S and the final demand D in a given year be presented in the following data.

	R S	D Total
•	30	60 130
	20 10	40. 70

If the forecast external demand in two years is a second of the second second

[10]

[15]

[12]

what should the total output X be?

(b) The demand function for two products are

$$p = 12 - 2x$$
 and $q = 20 - y$

Find the revenue function and the profit function. Determine the price and amounts that will maximise profit. What is the maximum profit? [15]

Question 2

- (a) Maximize $z = 26x 3x^2 + 5xy 6y^2 + 12y$ subject to 3x + y = 170 [10]
- (b) Maximize profits for a monopolistic firm producing two related goods, i.e., $P_1 = f(Q_1, Q_2)$ when the two goods are substitutes and the demand and total cost functions are

$$P_1 = 80 - 5Q_1 - 2Q_2$$
, $P_2 = 50 - Q_1 - 3Q_2$, $TC = 3Q_1^2 + Q_1Q_2 + 2Q_2^2$

Use (a) Cramer's rule for the first-order condition and (b) the Hessian for the second-order condition.

Question 3

Minimize the cost of 434 units of production of a firm when $Q = 10K^{0.7}L^{0.1}$ and $P_k = 28$, $P_L = 10$, by

(a) Finding the critical values	[10
(b) Using the bordered Hessian to test the second order of	conditions [15
Question 4	

(a) The marginal cost is given by $MC = 25 + 30Q - 9Q^2$. Fixed cost = 55. Find the total cost, average cost and the variable cost functions.

- (b) Given the demand function $P = 42 5Q Q^2$. Assuming that the equilibrium price is 6 evaluate the consumers surplus. [8]
- (c) Given the supply function $P = (Q + 3)^2$, find the producer surplus PS at $P_0 = 81$ and $Q_0 = 6$ [5]

Question 5

(a) Given $C = 2000 + 0.8Y_d$, where $Y_d = Y - T$ and T = 300 + 0.2Y, use the derivative to find the MPC [5]

(b) Given

 $Y = C + I_o + G_o + X_o - Z$ $T = T_o + tY$ $C = C_o + bY_{d,o}$

 $Z = Z_o + z Y_d$

b = 0.9t = 0.2 $C_o = 125$ $X_o = 150$ $Z_o = 55$ $I_0 = 92.5$ z = 0.15 $T_0 = 150$ $G_0 = 600$

i.	Calculate the equilibrium level of income	[10]
ii.	Calculate the effect on the equilibrium level of income of an increase of 60 in	
	autonomous exports	[5]
iii.	Calculate the effect on the equilibrium level of income of an increase of 30 in	
	autonomous imports.	[5]