UNIVERSITY OF SWAZILAND
 FACULTY OF SOCIAL SCIENCE
 DEPARTMENT OF ECONOMICS

MAIN EXAMINATION PAPER

DECEMBER 2017

PAPER TITLE: MATHEMATICS FOR ECONOMICS I
 CODE : ECO205/ECON 208

INSTRUCTIONS

1. ANSWER ANY FOUR QUESTIONS
2. ALL QUESTIONS CARRY EQUAL MARKS [25]
3. THIS IS A TWO HOUR PAPER

Question $\mathbf{I}^{\prime \prime}$

(a) Let the interreiationship between the production of two industries R and S and the final demand D in a given year be presented in the following data.

	R	S	D	Total
R	30	40	60	130

what should the total output X be?
(b) The demand function for two products are
$p=12-2 x$ and $q=20-y$
Find the revenue function and the profit function. Determine the price and amounts that will maximise profit. What is the maximum profit?

Question 2

(a) Maximize $z=26 x-3 x^{2}+5 x y-6 y^{2}+12 y$ subject to $3 x+y=170$
(b) Maximize profits for a monopolistic firm producing two related goods, ie., $P_{1}=f\left(Q_{1}, Q_{2}\right)$ when the two goods are substitutes and the demand and total cost functions are
$P_{1}=80-5 Q_{1}-2 Q_{2}, P_{2}=50-Q_{1}-3 Q_{2}, T C=3 Q_{1}^{2}+Q_{1} Q_{2}+2 Q_{2}^{2}$
Use (a) Cramer's rule for the first-order condition and (b) the Hessian for the second-order condition.

Question 3

Minimize the cost of 434 units of production of a firm when $Q=10 K^{0.7} L^{0.1}$ and $P_{k}=28, P_{L}=10$, by
(a) Finding the critical values [10]
(b) Using the bordered Hessian to test the second order conditions

Question 4

(a) The marginal cost is given by $M C=25+30 Q-9 Q^{2}$. Fixed cost $=55$. Find the total cost, average cost and the variable cost functions.
(b) Given the demand function $P=42-5 Q-Q^{2}$. Assuming that the equilibrium price is 6 evaluate the consumers surplus.
(c) Given the supply function $P=(Q+3)^{2}$, find the producer surplus PS at $P_{0}=81$ and $Q_{0}=6$ [5]

Question 5

(a) Given $C=2000+0.8 Y_{d}$, where $Y_{d}=Y-T$ and $T=300+0.2 Y$, use the derivative to find the MPC
(b) Given

$$
\begin{aligned}
& Y=C+I_{o}+G_{o}+X_{o}-Z \\
& T=T_{o}+t Y \\
& C=C_{o}+h Y_{d} \\
& Z=Z_{o}+Z Z_{G}= \\
& \begin{array}{llllll}
b=0.9 & t=0.2 & C_{o}=125 & X_{o}=150 & Z_{0}=55 & I_{0}=92.5 \\
z=0.15 & T_{0}=150 & G_{0}=600 & & &
\end{array}
\end{aligned}
$$

i. Calculate the equilibrium level of income
ii. Calculate the effect on the equilibrium level of income of an increase of 60 in autonomous exports
iii. Calculate the effect on the equilibrium level of income of an increase of 30 in autonomous imports.

