UNIVERSITY OF SWAZILAND FACULTY OF SOCIAL SCIENCES DEPARTMENT OF ECONOMICS MAIN EXAMINATION 2017/2018

TITLE OF PAPER	:	INTRODUCTION TO ECONOMETRICS I
COURSE CODE	:	ECO 307
TIME ALLOWED	:	TWO (2) HOURS

INSTRUCTIONS

:

- 1. ANSWER QUESTION ONE (1) AND ANY OTHER TWO (2) IN THIS PAPER.
- 2. ONLY SCIENTIFIC NON-PROGRAMMABLE CALCULATORS ARE ALLOWED.
- **3.** ROUND UP YOUR FINAL ANSWERS TO THREE (3) DECIMAL PLACES.
- 4. IF IT IS NOT SPECIFIED, USE $\alpha = 0.05$ FOR STATISTICAL TESTS.
- 5. THE REQUIRED PROBABILITY TABLES ARE ATTACHED AT THE BACK OF QUESTION PAPER.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1 (Compulsory

[40 MARKS]

a)	Differentiate between cross sectional and panel data.			
b)	State the Gauss-Markov theorem.	[6 Marks]		

c) The table below shows sample data of monthly wages (y) in Emalangeni and the education level (x) in years completed:

Education	12	18	14	12	11	16	10	18	15	12
Wage	3845	4040	4125	3250	2810	7000	3000	5405	5770	5000

- Use the data to fit a regression line. (Show working for full marks) [16 Marks] i)
- ii) Interpret the slope coefficient of the regression. [6 Marks]
- If the calculated coefficient of determination (R^2) for the above data is 0.3948, iii) interpret what it means. [6 Marks]

ANSWER ANY TWO QUESTIONS FROM THE FOLLOWING QUESTIONS

QUESTION 2

Consider an estimated model that is used to study the effects of missing lectures on the Grade Point Average (GPA) of the student. *HsAgr* is High school grade 12 average grade, and *Skip* is the average number of lectures missed per week.

$$\widehat{GPA} = 1.39 + 0.412 \, HsAgr - 0.083 \, Skip$$

(0.33) (0.094) (0.026)
 $n = 141, \qquad R^2 = 0.234$

Note that the values in brackets are standard errors.

a)	Interpret the model.	[6 Marks]

- b) Briefly explain whether the signs of the coefficients make sense. [5 Marks]
- c) Using the standard normal table approximation, find the 95% confidence interval for [8 Marks] β_{HSAgr} .
- d) Are you able to reject the null hypothesis H_0 : $\beta_{HsAgr} = 0.4$ at the 5% level of significance? [5 Marks]

2

[30 MARKS]

114

[6 Marks]

e) What is the p - value that can be attached on coefficient of the average number of lectures missed per week (β_{Skip}). [6 Marks]

QUESTION 3

[30 MARKS]

The following partial output was obtained from running a model of the following form in Stata : $y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u_i$

Source	SS	df	MS	Number of Obs =	526
Model	1927.877	7.877 3 642.625576 F(3, 522) =		F(3, 522) =	64.11
Residual	5232.538	522	10.0240183	Prob > F =	0.0000
Total	7160.414	525	13.6388844	R - Squared =	
				Root MSE =	3.1661

wage	Coef.	Std. Err.	t	P>t	[95% Conf. Interval]		
Log(educ)	0.595343	0.053025		0.000	0.491174	0.6995118	
exper	0.268287	0.036897		0.000	0.195802	0.3407717	
expersq	-0.00461	0.000822		0.000	-0.00623	-0.002998	
Constant	-3.96489	0.752153		0.000	-5.44251	-2.487272	

Where : wage – hourly wage, educ – education level in years, exper – experience level, expersq – experience square

- a) Briefly explain why a quadratic term may be included in a regression model. [4 Marks]
- b) State the fitted regression line. [4 Marks]
- c) Interpret the coefficient $\beta_{Log(educ)}$ [6 Marks]
- d) Test the hypothesis that $\beta_{Constant} = 0$ against $\beta_{Constant} \neq 0$ at the 1% level of significance. [5 Marks]
- e) Does the data provide evidence that *expersq* contributes useful information in the prediction of wages? [6 Marks]
- f) Calculate the Goodness of Fit measure (R^2) and interpret it. [5 Marks]

QUESTION 4

[30 MARKS]

- a) Briefly explain why in some models it is necessary to include an interaction of the independent variables. [6 Marks]
- b) Consider the following model whereby the returns to education depend upon the amount of work experience.

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 educ * exper + u$$

Where wage - monthly wage, educ - education in years, exper - years of work experience

- i. If experience is held constant, what is the effect of education? [6 Marks]
- ii. State the null hypothesis that the return to education does not depend on the level of experience. State and **justify** an appropriate alternative hypothesis. [6 Marks]
- c) If the model in (b) above is estimated as :

 $log(wage) = 5.9494 + 0.044 \ educ - 0.0215 \ exper + 0.0032 \ educ * exper$ $(0.2408) \ (0.0174) \qquad (0.020) \qquad (0.0015)$ $n = 935, \qquad R^2 = 0.1349$

- d) Test the hypotheses you stated in (b) above. [7 Marks]
- e) Is it necessary to include the interaction term (*educ* * *exper*) in the model? [5 Marks]