UNIVERSITY OF ESWATINI FACULTY OF SOCIAL SCIENCES DEPARTMENT OF ECONOMICS

MAIN EXAMINATION PAPER: DECEMBER 2018

TITLE OF PAPER: MATHEMATICS FOR ECONOMICS I COURSE CODE: ECO205/ IDE- ECO205

TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

1. ANSWER ANY THREE QUESTIONS

DO NOT OPEN THIS PAPER UNTIL YOU ARE INSTRUCTED TO DO SO.

Question 1

a) Given a simple national income model in two endogenlous variables Y and C. Use the method of matrix invasion to find the equilibrium level of national income and consumption. [12]

$$Y = C + I_o + G_o$$
$$C = a + bY$$

b) Consider the situation of a mass layoff (that is a firm shuts down) where 1200 people become unemployed and now begin a job search. In case there are two states employed (E) and unemployed (U), with an initial vector.

c)
$$X'_o = [E \ U] = [0 \ 1200]$$

Suppose that in any given period an unemployed person will find a job with probability 0.7 and will therefore remain unemployed with a probability of 0.3. Additionally, persons who find themselves employed in any given period may lose their jobs with a probability of 0.1 and will have a 0.9 probability of remaining employed.

- ii. What will be the number of unemployed people after
 - 1 Period [2]
 - 2 periods [5]
 - 3 periods [5]

Question 2

a. Consider an isoquant, in the form of a Cobb - Douglas production function $16k^{\frac{1}{4}}L^{\frac{3}{4}} = 2144$.

i. Find the slope of the isoquant $\frac{\partial \kappa}{\partial L}$ or the marginal rate of technical substitution (MRTS).

ii. Evaluate the MRTS at K = 256, L = 108 [8]

b. Suppose we are dealing with an economy with three industries and a given external demand vector such that; [2]

$$A = \begin{bmatrix} 0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} and B = \begin{bmatrix} 10 \\ 5 \\ 6 \end{bmatrix}$$

Find the optimal values of x_1, x_2 and x_3

Question 3

A producer has the possibility of discriminating between domestic and foreign markets for each product where the demands, respectively are

[15]

$$Q_1 = 21 - 0.1P_1$$
$$Q_2 = 50 - 0.4P_2$$

The Total Cost function is given by

$$TC = 2000 + 10Q$$
, where $Q = Q_1 + Q_2$

- a) What price will the producer charge in order to maximize profits if they discriminate between the two markets
 b) What price will the producer a second secon
- b) What price will the producer charge in order to maximize profits if they do not discriminate between the two markets
 c) Compare the profits with discriminate [8]
- c) Compare the profits with discrimination and without discrimination [3]

Question 4

a) Optimize the following Cobb-Douglas production function subject to the given constraints by (1) Using the method of Lagrange Multipliers and (2) Finding the critical values. [Hint use the Hessian Determinant]

$$Max \ q = K^{0.3} L^{0.5} \ subject \ to \ 6K + 2L = 384$$

b) Given $MC = 32 + 18Q - 12Q^2$, FC = 43, find

1.	Total cost	
ii.	Average cost	[5]
iii.	Variable cost	[3]

III. Variable cost [3]