UNIVERSITY OF ESWATINI

FACULTY OF SOCIAL SCIENCES
DEPARTMENT OF ECONOMICS

MAIN EXAMINATION PAPER: DECEMBER 2018

OF PAPER: MATHEMATICS FOR ECONOMICS I COURSE CODE: ECO205/ IDE- ECO205

TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

1. ANSWER ANY THREE QUESTIONS

DO NOT OPEN THIS PAPER UNTIL YOU ARE INSTRUCTED TO DO SO.

Question 1

a) Given a simple national income model in two endogenlous variables Y and C. Use the method of matrix invasion to find the equilibrium level of national income and consumption.

$$
\begin{gather*}
Y=C+I_{o}+G_{o} \tag{12}\\
C=a+b Y
\end{gather*}
$$

b) Consider the situation of a mass layoff (that is a firm shuts down) where 1200 people become unemployed and now begin a job search. In case there are two states employed (E) and unemployed (U), with an initial vector.

$$
\text { c) } X_{o}^{\prime}=\left[\begin{array}{ll}
E & U
\end{array}\right]=\left[\begin{array}{ll}
0 & 1200]
\end{array}\right.
$$

Suppose that in any given period an unemployed person will find a job with probability 0.7 and will therefore remain unemployed with a probability of 0.3 . Additionally, persons who find themselves employed in any given period may lose their jobs with a probability of 0.1 and will have a 0.9 probability of remaining employed.
i. Set up the Markov transition matrix for this problem
ii. What will be the number of unemployed people after

- 1 Period
- 2 periods
- 3 periods

Question 2

a. Consider an isoquant, in the form of a Cobb - Douglas production function $16 k^{\frac{1}{4}} L^{\frac{3}{4}}=2144$.
i. Find the slope of the isoquant $\frac{\partial K}{\partial L}$ or the marginal rate of technical substitution (MRTS).
ii. Evaluate the MRTS at $K=256, L=108$
b. Suppose we are dealing with an economy with three industries and a given external demand vector such that;

$$
A=\left[\begin{array}{lll}
0.2 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.2
\end{array}\right], X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } B=\left[\begin{array}{c}
10 \\
5 \\
6
\end{array}\right]
$$

Find the optimal values of x_{1}, x_{2} and x_{3}

Question 3

A producer has the possibility of discriminating between domestic and foreign markets for each product where the demands, respectively are

$$
\begin{aligned}
& Q_{1}=21-0.1 P_{1} \\
& Q_{2}=50-0.4 P_{2}
\end{aligned}
$$

The Total Cost function is given by

$$
T C=2000+10 Q, \text { where } Q=Q_{1}+Q_{2}
$$

a) What price will the producer charge in order to maximize profits if they discriminate between the two markets
b) What price will the producer charge in order to maximize profits if they do not discriminate between the two markets
c) Compare the profits with discrimination and without discrimination

Question 4

a) Optimize the following Cobb-Douglas production function subject to the given constraints by (1) Using the method of Lagrange Multipliers and (2) Finding the critical values. [Hint use the Hessian Determinant]

Max $q=K^{0.3} L^{0.5}$ subject to $6 K+2 L=384$
b) Given $M C=32+18 Q-12 Q^{2}, F C=43$, find
i. Total cost
ii. Average cost
iii. Variable cost

