UNIVERSITY OF ESWATINI FACULTY OF SOCIAL SCIENCES DEPARTMENT OF ECONOMICS MAIN EXAMINATION DECEMBER 2018

TITLE OF PAPER	:	INTRODUCTION TO ECONOMETRICS I			
COURSE CODE	:	ECO 307			
TIME ALLOWED	:	TWO (2) HOURS			

INSTRUCTIONS

:

- 1. ANSWER QUESTION ONE (1) AND ANY OTHER TWO (2) IN THIS PAPER.
- 2. ONLY SCIENTIFIC NON-PROGRAMMABLE CALCULATORS ARE ALLOWED.
- **3.** ROUND UP YOUR FINAL ANSWERS TO THREE (3) DECIMAL PLACES.
- 4. IF IT IS NOT SPECIFIED, USE $\alpha = 0.05$ FOR STATISTICAL TESTS.
- 5. THE REQUIRED PROBABILITY TABLES ARE ATTACHED AT THE BACK OF QUESTION PAPER.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1 (Compulsory

[40 MARKS]

- a) With the aid of an example, briefly explain the "dummy variable trap" [6 Marks]
- b) Provide a simple proof that the residuals and fitted values from an *OLS* model are uncorrelated $(\sum \hat{y}_i \hat{u}_i = 0)$ [6 Marks]
- c) The table below shows sample data of CEO salaries (y) in Emalangeni and the companies' return on equity (ROE) (x) in percentages:

Salary	1095	1001	1122	578	1368	1145	1078	1004	1007	000
ROE	14.1	10.9	23.5	50	12.0		10/0	1094	1237	833
I		20.5	20.0	J.9	15.8	20	16.4	16.3	10.5	26.3
		,								
i)	Use the	e data to	fit a reg	ression	ling (She					
	[16 Marks]									
ii)	Interpret the slope coefficient of the regression									
:::)									[6	Marksj
111)	If the calculated coefficient of determination (R^2) for the above data is 0 2012								- 0 2052	

interpret what it means. [6 Marks]

ANSWER ANY TWO QUESTIONS FROM THE FOLLOWING QUESTIONS

QUESTION 2

[25 MARKS]

[6 Marks]

Consider an estimated model for the number of defective products (*Defect*) per 100 units of production, for a citrus canning factory in Malkerns. *Hrsemp* is the total training hours provided to employees, and *Employ* is the number of workers in a shift.

 $Log(\widehat{Defect}) = 11.74 + 0.42Hrsemp - 0.083 \log(Employ)$ (4.57) (0.019) (0.360) n = 43, $R^2 = 0.310$

Note that the values in brackets are standard errors.

a) Interpret the model.

- b) Briefly explain whether the signs of the coefficients make sense. [5 Marks]
- c) Using the standard normal table approximation, find the 95% confidence interval for β_{Hrsemp} . [8 Marks]

- d) Are you able to reject the null hypothesis H_0 : $\beta_{Hrsemp} = 0$ at the 5% level of significance?
- [5 Marks] e) What is the p-value that can be attached on coefficient of the log of the number of workers working in a shift $(\beta_{Log(Employ)})$. Furthermore, explain what this p-valuemeans. [6 Marks]

QUESTION 3

(Am

[30 MARKS]

The following model based on SAT scores was estimated:

$$S\widehat{AT} = 1,028.10 + 19.30 \text{ hsize} - 45.09 \text{ female} - 169.81 \text{ Black} + 62.31 \text{ female} * \text{ Black}$$

(6.29) (3.83) (4.29) (12.71) (18.15)
 $n = 4,137$ $R^2 = 0.0858$

Where SAT is the SAT score of a student, hsize is the high school class size of student, female is a gender variable (=1 is student is female), Black is a race variable (=1 for Black and O otherwise)

a)	Holding hsize fixed, what is the estimated difference in SAT score betwee	en nonblack			
	females and nonblack males?				
b)	Is the estimated difference in (a) also a subscription of	[7 Marks]			
.' a)	All above statistically significant?	[8 Marks]			
C)	what is the estimated difference in SAT score between Black females and no				
	females?				
d)	How would you toot for the standard and the	[8 Marks]			

How would you test for the statistical significance of the difference in (c) above?

[7 Marks]

QUESTION 4

[30 MARKS]

The following partial output was obtained from running a model of the following form in Stata

$$: y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u_i$$

Source	SS	df	MS	Number of Obs =	526
Model	1927.877	3	642.625576	F(3, 522) =	64.11
Residual	5232.538	522	10.0240183	Prob > F =	0.0000
Total	7160.414	525	13.6388844	R - Squared =	
				Root MSE =	3.1661

wage	Coef.	Std. Err.	t	P>t	[95% Conf. Interval]		
Log(educ)	0.595343	0.053025		0.000	0.491174	0.6995118	
exper	0.268287	0.036897		0.000	0.195802	0.3407717	
expersq	-0.00461	0.000822		0.000	-0.00623	-0.002998	
Constant	-3.96489	0.752153		0.000	-5.44251	-2.487272	

Where : wage – hourly wage, educ – education level in years, exper – experience level, expersq – experience square

- a) Briefly explain why a quadratic term may be included in a regression model. [4 Marks]
- b) State the fitted regression line. [4 Marks]
- c) Interpret the coefficient $\beta_{Log(educ)}$ [6 Marks]
- d) Test the hypothesis that $\beta_{Constant} = 0$ against $\beta_{Constant} \neq 0$ at the 1% level of significance. [5 Marks]
- e) Does the data provide evidence that *expersq* contributes useful information in the prediction of wages?
 [6 Marks]
- f) Calculate the Goodness of Fit measure (R^2) and interpret it. [5 Marks]