UNIVERSITY OF ESWATINI FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

MAIN EXAMINATION

DECEMBER 2018
TITLE OF PAPER: ECONOMETRIC METHODS I
COURSE CODE: ECO 419
TIME ALLOWED: 2 HOURS
INSTRUCTIONS:
ANSWER QUESTION ONE (1) AND ANY TWO (2)OTHER QUESTIONS
QUESTION ONE CARRIES 40 MARKS.
THE REST OF THE QUESTIONS CARRY 20 MARKSEACH

1. The following 2 structural equations represent a simple demand- supply model-:

Demand-: $\quad Q_{t}=a_{0}+a_{1} P_{t}+a_{2} Y_{t}+u_{1 t} \quad a_{1}<0 \quad$ and $a_{2}>0$
Supply-: $\quad Q_{t}=b_{0}+b_{1} P_{t}+u_{2 t} \quad b_{1}>0$

Where Q is quantity, P is price, and Y is consumer's income. It is assumed that the market is cleared in every year so that Q_{t} represents both quantity bought and sold in year t.
(a) Explain why this is a simultaneous equation model?
(b) Which are the endogenous and exogenous variables of the system?
(c) Why would the estimation of the demand \& supply functions by OLS give biased and inconsistent parameter estimates?
(d) Write the reduced form equations corresponding to the structural equations. [20]
(e) Why are these reduced form equations important?
(f) What do the reduced form coefficients measure in this market model?

Answer Any Two Questions From The Following:

[20 Marks Each]

Question Two

2. (a) What are the main differences between Box-Jenkins and VAR approaches to economic forecasting?
(b) Consider the following equation for per capita consumption of beef in Eswatini:

$$
\begin{array}{cccll}
\hat{B}_{t}=-330.3+49.1 \ln Y_{t}-0.34 P B_{t}+0.33 P R P_{t}-15.4 D_{t} \\
& \mathrm{Se}= & (7.4) & (0.13) & (0.12) \\
\mathrm{R}^{2}=0.70 & \mathrm{t}= & 6.6 & -2.6 & 2.7 \\
& \mathrm{n}=28 & & \mathrm{DW}=0.94
\end{array}
$$

Where: $B_{t}=$ the annual per capita kilograms of beef consumed in Eswatini in year t
$\ln Y_{t}=$ the \log of real per capita disposable real income in Eswatini in year t
$\mathrm{PB}_{\mathrm{t}}=$ average annualized real wholesale price of beef in year t (in cents per kilogram)
$\operatorname{PRP}_{t}=$ average annualized real wholesale price of pork in year t (in cents per kilogram)
$D_{t}=$ a dummy variable equal to 1 for years in which there was a "health scare" about the dangers of red meat, 0 otherwise

Test for serial correlation using the Durbin-Watson d test at the 5-percent level. [5 marks]
(c) Assume you applied the method of Generalized least squares to the estimation in (b) above and obtained the following-:

$$
\begin{array}{cccc}
\hat{B}_{t}=-193.3+35.2 \ln Y_{t}-0.38 P B_{t}+0.10 P R P_{t}-5.7 D_{t} \tag{2}\\
\quad \mathrm{Se}= \\
\mathrm{R}^{2}=0.857 \quad(14.1) \quad(0.10) \quad(0.09) & (3.9) \\
& & & \\
\mathrm{n}=28 & & \hat{\rho}=0.82
\end{array}
$$

(i) Test for serial correlation using the Durbin-Watson d test at the 5-percent level. [8 marks]
(ii) Compare Equations 1 and 2. Which do you prefer and why?

Question Three

3. (a) With the aid of graphs, distinguish between stationary \& non-stationary time series.
(b) Consider the following time series model-:

$$
Y_{t}=\beta_{0}+\beta_{1} Y_{t-1}+\beta_{2} X_{t-1}+\varepsilon_{t}
$$

Outline the consequences for OLS estimates of this model if the error term ε_{t} has the following structure-:

$$
\varepsilon_{t}=0.4 \varepsilon_{t-1}+u_{t}
$$

Where u_{t} is a classical error term (i.e., white noise error term)

Question Four

4. (a) The following results are a computer output for testing for unit roots on the logarithm of disposable personal income (LGDPI).

Would you say LGDPI is stationary at levels or not? Use the 5% level of significance to support your answer.
(b) (i) Describe the concept of cointegration.
(ii) Discuss 3 problems associated with differencing time series.
(iii) State 3 benefits of using an error correction model?

