UNIVERSITY OF ESWATINI

FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

MAIN EXAMINATION

DECEMBER 2018

TITLE OF PAPER: ECONOMETRIC METHODS I

COURSE CODE: ECO 419

TIME ALLOWED: 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE (1) AND ANY TWO (2) OTHER QUESTIONS

QUESTION ONE CARRIES 40 MARKS.

THE REST OF THE QUESTIONS CARRY 20 MARKS EACH

-

Question One (Compulsory)

[40 Marks]

1. The following 2 structural equations represent a simple demand- supply model-:

Demand-: $Q_t = a_0 + a_1 P_t + a_2 Y_t + u_{1t}$ $a_1 < 0$ and $a_2 > 0$ Supply-: $Q_t = b_0 + b_1 P_t + u_{2t}$ $b_1 > 0$

Where Q is quantity, P is price, and Y is consumer's income. It is assumed that the market is cleared in every year so that Q_t represents both quantity bought and sold in year t.

(a)	Explain why this is a simultaneous equation model?	[5]
(b)	Which are the endogenous and exogenous variables of the system?	[3]
(c)	Why would the estimation of the demand & supply functions by OLS give bia	ased and
	inconsistent parameter estimates?	[5]
(d)	Write the reduced form equations corresponding to the structural equations.	[20]
(e)	Why are these reduced form equations important?	[3]
(f)	What do the reduced form coefficients measure in this market model?	[4]

Answer Any Two Questions From The Following: [20 Marks Each]

Question Two

2. (a) What are the main differences between Box-Jenkins and VAR approaches to economic forecasting? [5 Marks]

(b) Consider the following equation for per capita consumption of beef in Eswatini:

$$\hat{B}_{t} = -330.3 + 49.1 ln Y_{t} - 0.34 PB_{t} + 0.33 PRP_{t} - 15.4 D_{t}$$
(1)

$$Se^{=} (7.4) (0.13) (0.12) (4.1)$$

$$t^{=} 6.6 -2.6 2.7 -3.7$$

$$R^{2} = 0.70 \qquad n^{=} 28 \qquad DW^{=} 0.94$$

Where: B_t = the annual per capita kilograms of beef consumed in Eswatini in year t

 lnY_t = the log of real per capita disposable real income in Eswatini in year t

 PB_t = average annualized real wholesale price of beef in year t (in cents per kilogram)

 PRP_t = average annualized real wholesale price of pork in year t (in cents per kilogram)

 D_t = a dummy variable equal to 1 for years in which there was a "health scare" about the dangers of red meat, 0 otherwise

Test for serial correlation using the Durbin–Watson d test at the 5-percent level. [5 marks]

(c) Assume you applied the method of Generalized least squares to the estimation in (b) above and obtained the following-:

$$B_t = -193.3 + 35.2 ln Y_t - 0.38 P B_t + 0.10 P R P_t - 5.7 D_t$$
Se= (14.1) (0.10) (0.09) (3.9) (2)

$$R^2 = 0.857$$
 $n = 28$ $\hat{\rho} = 0.82$

(i) Test for serial correlation using the Durbin–Watson d test at the 5-percent level. [8 marks](ii) Compare Equations 1 and 2. Which do you prefer and why? [2 marks]

Question Three

3. (a) With the aid of graphs, distinguish between stationary & non-stationary time series. [15 marks]

(b) Consider the following time series model-:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 X_{t-1} + \varepsilon_t$$

Outline the consequences for OLS estimates of this model if the error term ε_t has the following structure-:

$$\varepsilon_t = 0.4\varepsilon_{t-1} + u_t$$

Where u_t is a classical error term (i.e., white noise error term)

[5 marks]

Question Four

4. (a) The following results are a computer output for testing for unit roots on the logarithm of disposable personal income (LGDPI).

Augmented Dickey-Fuller Unit Ro	pot Test on LGDPI	
Null Hypothesis: LGDPI has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Fixed)		
************************	t-Statistic	Pros
Augmented Dickey-Fuller test statistic Test critical values 1% level 5% level 10% level	-2.322310 -4.186481 -3.518090 -3.189732	0.4134
*MacKinnon (1996) one-sided p-values.		

Would you say LGDPI is stationary at levels or not? Use the 5% level of significance to support your answer. [5]

(b) (i) Describe the concept of cointegration.	[3]
(ii) Discuss 3 problems associated with differencing time series.	[6]
(iii) State 3 benefits of using an error correction model?	[6]

溃