UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

BASS I

TITLE OF PAPER	:	ELEMENTARY QUANTITATIVE METHODS I
COURSE NUMBER	*	MS011
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(b) If $kx^3 + 9x^2 - 3x - 7$ is divided by $x + 1$, the remainder is -4. Find the value of k.	[M3A2]
(c) Use long division to evaluate $(6x^3 - 5x^2 + x - 4) \div (2x^2 - x + 3)$.	[M6A4]

QUESTION 2

(a) Solve the following equations for x

(i) $\log_2 x + \log_2(x+2) = 3$	[M3A3]
(ii) $\log(x^2 + 1) - \log(x - 2) = 1$	[M3A3]
(b) Evaluate	
(i) log ₃ 243	[M2A2]
(ii) $\log_{10} \frac{1}{10000}$	[M2A2]

QUESTION 3

(a) Prove the following trig identities

(i) $\sin\theta + \cos\theta \cot\theta = \theta$	[M3A2]
(ii) $\frac{(\sec\theta - 1)(\sec\theta + 1)}{\tan\theta} = \tan\theta$	[M3A2]
(b) (i) If $\tan \theta = \frac{3}{4}$ and θ is in θIII , find $\sin \theta$ and $\cos \theta$	[M3A2]
(ii) If $\sin \theta = \frac{12}{13}$ and θ is in θII , find the other 5 ratios.	[M3A2]

4

5

QUESTION 4

a) Find all roots of $p(x) = x^3 - 9x^2 + 26x - 24 = 0$	[m6A4]
b) Solve the following trig equations	
(i) $\cos 2\theta = \frac{1}{2}$	[M6A4]
(ii) $2\cos^2\theta + \cos\theta - 1 = 0$	[M3A2]

QUESTION 5

. .

a) Find the amount at the end of nine years on an original	principal of E4 500 at 8% if interest is
(i) simple interest	[M3A2]
(ii) compounded annually	[M3A2]
b) Find an equation for each of the following straight lines.	Write your answer in 3 different form
(i) through $(2,3)$ and $(4,8)$	[M3A2]
(ii) through $(3, -3)$ and perpendicular to $2x + 3y = 6$	[M2A2]

QUESTION 6

a) Use synthetic division to find the quotient and the remainder when $p(x) = 2x^4 + 5x^3 - 2x62 + 4x + 6$ is divided by D(x) = x + 3. [M6A4]

b) The area of a rectangle is 6 square metres. If the length is 1 metre longer than the width find the dimensions of the rectangle. [M6A4]

QUESTION 7

a) Givent that $f(x) = \frac{3}{x-2}$ (i) Find f(8)(ii) Find $f^{-1}(x)$ (iii) Find $f^{-1}(\frac{1}{2})$ b) Given that $\sin \theta = \frac{3}{5}$ and θ is in θII . Find (i) $\sin 2\theta$ (ii) $\tan 2\theta$

[10]

[10]