UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/12

BASS I

TITLE OF PAPER	$:$	ELEMENTARY QUANTITATIVE METHODS I
COURSE NUMBER	$:$	MSO11
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Solve, giving solutions between 0° and 360°, the equation

$$
\sin ^{2} \theta+2 \cos \theta=2
$$

(b) Find the exact value of $\cos 15^{\circ}$
(c) Solve for x
(i) $2 x=64 \quad 2^{x}=64$
(ii) $3 x=\frac{1}{81} 3^{x}=\frac{1}{81}$
(a) Use the remainder theorem to find the remainder when $p(x)=5 x^{3}-14 x+3$ is divided by $D(x)=x-2$
(b) Use the factor theorem to determine whether $D(x)=x-5$ is a factor of $p(x)=x^{3}+2 x^{2}-25 x-5$.
(c) Solve $\tan 3 \theta=1$

QUESTION 3

(a) Given that $f(x)=\frac{2 x+3}{x-1}$ find
(i) $f(3)$
(ii) $f^{-1}(x)$
(iii) $f^{-1}(2)$
(b) Solve $2 \log _{5} x=\log _{5}(2 x+3)$

QUESTION 4

a) Find the simple interest on E 4000 at 20% for 9 years.
b) Find the amount at the end of 12 years on a principal of E8 000 at 8% compounded quarterly.
c) Solve for x
(i) $4^{x}=1024$.
(ii) $3^{x}=7$.

QUESTION 5

a) Determine whether $p(x)=x^{3}-x^{2}+2$ is divible by $D(x)=x+1$.
b) Find all rational roots of $p(x)=x^{4}-5 x^{2}+4$.
c) Use synthetic division to evaluate $\left(x^{8}-1\right) \div(x+1)$.

QUESTION 6

a) Prove the following identity

$$
\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}=\sin \theta+\cos \theta
$$

b) Find an equation of a straight line in
(i) through (5,-5) parallel to $4 x+y-1=0$
(ii) through (4,3) perpendicular to $3 x+2 y-2=0$

QUESTION 7

a) Find the quotient and remainder when $p(x)=3 x^{4}-4 x^{3}+2 x+1$ is divided by $D(x)=x^{2}+2 x$
b) Two rectangular rooms each have an area of $240 \mathrm{~m}^{2}$. If the length of one of the rooms is x metres and the other room is $4 m$ longer, write down the width of each room in terms of x. If the width of the rooms differ by 3 m form an equation in x and show that this reduce to $x^{2}+4 x-320=0$. Solve this equation.

