University of Swaziland

Final Examination, May 2012

BASS I

Title of Paper : Quantitative Techniques II
Course Number : MS012
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

(a) Evaluate the following limits
(i) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}$
(ii) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(iii) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2}+1}{x^{2}+3}$
[5]
(b) Show that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\frac{1}{2} . \tag{8}
\end{equation*}
$$

Question 2

(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if

$$
\begin{equation*}
f(x)=\sqrt{2 x+1} \tag{10}
\end{equation*}
$$

(b) From the graph of $f(x)$ shown below, find
(i) $\lim _{x \rightarrow 2^{-}} f(x)$ [3]
(ii) $\lim _{x \rightarrow 2^{+}} f(x)$
(iii) $\lim _{x \rightarrow 2} f(x)$, and explain.

Question 3

(a) Find $f^{\prime}(x)$ for each of the following functions
(i) $f(x)=2 x^{5}+x^{2}+\frac{1}{x}+1$
(ii) $f(x)=\left(x^{3}+4 x+3\right)^{8}$
(iii) $f(x)=e^{x} \sin x+\cos 3 x$
(iv) $f(x)=\frac{x+1}{x+2}$
(b) If $y=\frac{A}{x}+B x$, where A and B are constants, show that

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y . \tag{6}
\end{equation*}
$$

Question 4

(a) Evaluate the following integrals

$$
\text { (i) } \int 5 \mathrm{~d} x
$$

$$
\begin{equation*}
\text { (ii) } \int\left(3 x^{4}+2 x^{2}+1\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

(iii) $\int \sin (4 x+3) \mathrm{d} x$
(iv) $\int e^{2 x+1} \mathrm{~d} x$
(b) Find the area enclosed by the curve $y=-x^{2}+9$ and the x-axis.

Question 5

(a) For the function $f(x)=x^{2}-4 x+3$, find the
$\begin{array}{ll}\text { (i) stationary points } & {[4]} \\ \text { (ii) intervals of increase and decrease } & {[6]}\end{array}$
(b) Make a rough sketch of the curve

$$
f(x)=x^{3}-6 x^{2}+9 x+1,
$$

by considering the x - and y-intercepts, turning points, and intervals of increase/decrease.

Question 6

(a) Show that the graph of the function

$$
f(x)=x^{3}+x^{2}+5 x+6
$$

is always increasing.
(b) If

$$
R(v)=\frac{v^{2}}{4}+\frac{500}{v}
$$

find the value of v for which R is minimum.
(c) What type of stationary point(s) does the curve

$$
f(x)=-2 x^{2}-2 x+1
$$

have?

Question 7

(a) Define Market Equilibrium.
(b) Find the
(i) Equilibrium price
(ii) Consumer's surplus
(iii) Producer's surplus
at the equilibrium price level, given that

$$
\begin{aligned}
& p=D(x)=20-0.05 x \\
& p=S(x)=2+0.0002 x^{2}
\end{aligned}
$$

