University of Swaziland

Supplementary Examination, July 2012

BASS I

Title of Paper : Quantitative Techniques II
Course Number : MS012
Time Allowed : Three (3) hours
Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

Evaluate the following limits
(i) $\quad \lim _{x \rightarrow 2}\left(x^{2}+3 x+1\right)$ [3]
(ii) $\lim _{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$
(iii) $\lim _{x \rightarrow \infty}\left(e^{-x}+1\right)$
(iv) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+x+1}{x+4}$
(v) $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$

Question 2

(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if

$$
\begin{equation*}
f(x)=\sqrt{x} . \tag{8}
\end{equation*}
$$

(b) From the graph of $f(x)=\frac{1}{x^{2}}$ shown below, find
(i) $\lim _{x \rightarrow 0^{-}} f(x)$
(ii) $\lim _{x \rightarrow 0^{+}} f(x)$
(iii) $\lim _{x \rightarrow-\infty} f(x)$,
(iv) the horizontal asymptote of $f(x)$

Question 3

(a) Find $f^{\prime}(x)$ for each of the following functions
(i) $f(x)=x^{5}+3 x^{2}+2$
(ii) $f(x)=e^{x} \sin x$
(iii) $f(x)=(x+\cos x)^{10}$
(iv) $f(x)=\frac{x^{2}+1}{x+2}$
[4]
(b) Find $f^{\prime \prime}(x)$ for the function $f(x)=\ln \left(x^{2}+1\right)$.

Question 4

(a) Evaluate the following integrals
(i) $\int x^{2} \mathrm{~d} x$
(ii) $\int\left(5 x^{3}+2 x+7\right) \mathrm{d} x$
(iii) $\int \sqrt{2 x+4} \mathrm{~d} x$

$$
\begin{align*}
& \text { (iv) } \int \frac{2 x+3}{x^{2}+3 x} \mathrm{~d} x \tag{3}\\
& \text { (v) } \int \cos 3 x \mathrm{~d} x \tag{3}
\end{align*}
$$

(b) Find the area enclosed by the curve $y=-x^{2}+x+2$ and the x-axis.

Question 5

(a) What type of stationary point(s) does the curve $f(x)=$ $x^{3}-3 x^{2}+3 x-1$ have?
(b) Make a rough sketch of the curve

$$
f(x)=x^{3}-3 x^{2}+1,
$$

by considering the x - and y-intercepts, turning points, and intervals of increase/decrease.

Question 6

(a) A rectangular box, with a lid, is made from a thin metal sheet. Its length is $2 x \mathrm{~cm}$ and its width is $x \mathrm{~cm}$. If the box must have a volume of $72 \mathrm{~cm}^{2}$,
(i) Show that the area $A \mathrm{~cm}^{2}$ of metal used is given by

$$
\begin{equation*}
A=4 x^{2}+\frac{216}{x}, \tag{8}
\end{equation*}
$$

(ii) Find the value of x so that A is minimum.
(b) The cost $\$ C$ of running a boat on a trip is givn by

$$
C=4 v^{2}+\frac{1000}{v},
$$

where v is the average speed in km / h. Find the value of v for which the cost is minimum.

Question 7

(a) Define Market Equilibrium.
(b) Find the
(i) Equilibrium price
(ii) Consumer's surplus
(iii) Producer's surplus
at the equilibrium price level, given that

$$
\begin{aligned}
& p=D(x)=20-0.05 x \\
& p=S(x)=2+0.0002 x^{2} .
\end{aligned}
$$

