UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, JULY 2012

B.A.S.S. I /B.Comm I, D.COM I (IDE)

TITLE OF PAPER	$:$	CALCULUS FOR BUSINESS AND SOCIAL SCIENCE
COURSE NUMBER	$:$	MS 101 AND IDE MS101
TIME ALLOWED	$:$	THREE (3) HOURS
	$:$	1. THIS PAPER CONSISTS OF
INSTRUCTIONS		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

(a) Use the long division method to find the quotient and remainder when $P(x)=20 x^{3}+21 x+18 x^{2}+40$ is divided by $D(x)=5 x+7$
(b) Find all the real roots of the polynomial $x^{4}-x^{3}-19 x^{2}+49 x-30$.
(c) The expression $a x^{3}+b x+2$ has $x+2$ as a factor. When the expression is divided by $x-1$ the remainder is 4 . Find the values of a and b.

Question 2

(a) Calculate $(A-B) C^{T}$ if the matrices A, B and C are given by

$$
A=\left[\begin{array}{cc}
1 & -2 \\
4 & 4 \\
6 & 3 \\
3 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 5 \\
-2 & -4 \\
1 & 3 \\
3 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1 \\
2 & 1 \\
1 & 0 \\
3 & 2
\end{array}\right] .
$$

(b) Use Cramer's rule to solve the following system of equations

$$
\begin{aligned}
& 2 x-y+2 z=2 \\
& x+10 y-3 z=5 \\
& -x+y+z=-3 .
\end{aligned}
$$

Question 3

(a) Write the first four terms of the binomial expansion $\frac{1}{\sqrt{1+2 x}}$.
(b) Using the result in $3(a)$, find the value of $\frac{1}{\sqrt{1.02}}$ correct to five significant figures.
(c) Find the term that involves x^{8} in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{7}$.
(d) Expand $(x+2 y)^{4}$ using the Binomial theorem.

Question 4

(a) Solve for x in each of the following equations
(i) $\log _{x} \frac{1}{32}=5$.
(ii) $\log _{3}(x+12)-\log _{3}(x-3)=\log _{3} 6$.
(b) Suppose that you deposit $E 8000$ on your $30 t h$ birthday. What rate r compounded semi-annually must your deposit earn in order to grow to 1 million Emalangeni by your 70th birthday.
(c) How much money will grow to $E 1200$ in 5 years at 12% compounded continuously.

Question 5

(a) Find the first two terms of the geometric progression whose $3 r d$ term is $\frac{25}{4}$ and 7 th term is $\frac{4}{25}$.
(b) The sum of n terms of the series $-2,2,6, \ldots$ is 160 . Find n.
(c) Find the sum of the infinite geometric progression $\frac{3}{2}, 1, \frac{2}{3}, \ldots$
(d) Convert the repeating decimal 0.52181818 ... into and equivalent common fraction.

Question 6

(a) Solve the following trigonometric equation

$$
\begin{equation*}
\sin x-2 \sin x \cos x=0 \tag{5}
\end{equation*}
$$

giving all solutions between 0° and 360°.
(b) Prove that

$$
\begin{equation*}
\frac{\csc \theta}{\csc \theta-\sin \theta}=\sec ^{2} \theta . \tag{5}
\end{equation*}
$$

(c) Using mathematical induction prove that

$$
\begin{equation*}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{n \times(n+1)}=\frac{n}{n+1} \tag{10}
\end{equation*}
$$

for all positive integers n.

Question 7

(a) Find the equations of a straight line passing through the intersection of $3 x-y=9$ and $x+2 y=-4$ perpendicular to $3=4 y+8 x$.
(b) Find the centre and radius of the circle

$$
7 x^{2}+7 y^{2}+14 x-56 y-25=0
$$

(c) Given the points $A=(6,0)$ and $B=(8,6)$. Find the equation of a circle with centre A and passing through the point B.
(d) Write the complex number $3(\cos 135+i \sin 135)$ in cartesian form $x+i y$.[4]

END OF EXAMINATION

Useful Formulas

1. $\sin ^{2} \theta+\cos ^{2} \theta=1$
2. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
3. $\sin (A-B)=\sin A \cos B-\cos A \sin B$
4. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
5. $\cos (A-B)=\cos A \cos B+\sin A \sin B$
6. $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
7. $\sin 2 A=2 \sin A \cos A$
8. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$
9. $\cos 2 A=2 \cos ^{2} A-1$
10. $\cos 2 A=1-2 \sin ^{2} A$

Degrees	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

