UNIVERSITY OF SWAZILAND

Ľ

SUPPLEMENTARY EXAMINATION, JULY 2012

B.A.S.S. I /B.Comm I, D.COM I (IDE)

TITLE OF PAPER	:	CALCULUS FOR BUSINESS AND SOCIAL SCIENCE
COURSE NUMBER	:	MS 101 AND IDE MS101
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

- (a) Use the long division method to find the quotient and remainder when $P(x) = 20x^3 + 21x + 18x^2 + 40 \text{ is divided by } D(x) = 5x + 7$ [7]
- (b) Find all the real roots of the polynomial $x^4 x^3 19x^2 + 49x 30$. [8]
- (c) The expression $ax^3 + bx + 2$ has x + 2 as a factor. When the expression is divided by x 1 the remainder is 4. Find the values of a and b. [5]

Question 2

(a) Calculate $(A - B)C^T$ if the matrices A, B and C are given by

$$A = \begin{bmatrix} 1 & -2 \\ 4 & 4 \\ 6 & 3 \\ 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 5 \\ -2 & -4 \\ 1 & 3 \\ 3 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 0 \\ 3 & 2 \end{bmatrix}.$$

(b) Use Cramer's rule to solve the following system of equations

$$2x - y + 2z = 2$$
$$x + 10y - 3z = 5$$
$$-x + y + z = -3.$$

[13]

[7]

Question 3

(a)	Write the first four terms of the binomial expansion $\frac{1}{\sqrt{1+2x}}$.	5]
(b)	Using the result in $3(a)$, find the value of $\frac{1}{\sqrt{1.02}}$ correct to five significant figures.	nt 4]

- (c) Find the term that involves x^8 in the expansion of $(x^2 \frac{1}{x})^7$. [6]
- (d) Expand $(x+2y)^4$ using the Binomial theorem. [5]

Question 4

(a) Solve for x in each of the following equations

(i)
$$\log_x \frac{1}{32} = 5.$$
 [5]

(ii)
$$\log_3(x+12) - \log_3(x-3) = \log_3 6.$$
 [5]

- (b) Suppose that you deposit E8000 on your 30th birthday. What rate r compounded semi-annually must your deposit earn in order to grow to 1 million Emalangeni by your 70th birthday.
- (c) How much money will grow to E1200 in 5 years at 12% compounded continuously. [5]

Question 5

(a) Find the first two terms of the geometric progression whose 3rd term is $\frac{25}{4}$ and 7th term is $\frac{4}{25}$. [5]

(b) The sum of
$$n$$
 terms of the series $-2, 2, 6, \dots$ is 160. Find n . [5]

- (c) Find the sum of the infinite geometric progression $\frac{3}{2}, 1, \frac{2}{3}, \dots$ [5]
- (d) Convert the repeating decimal 0.52181818... into and equivalent common fraction. [5]

Question 6

(a) Solve the following trigonometric equation

$$\sin x - 2\sin x \cos x = 0$$

giving all solutions between 0° and 360°.

(b) Prove that

$$\frac{\csc\theta}{\csc\theta - \sin\theta} = \sec^2\theta.$$

[5]

[5]

(c) Using mathematical induction prove that

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n\times (n+1)} = \frac{n}{n+1}$$

for all positive integers n . [10]

Question 7

(a) Find the equations of a straight line passing through the intersection of 3x - y = 9 and x + 2y = -4 perpendicular to 3 = 4y + 8x. [5]

(b) Find the centre and radius of the circle

$$7x^2 + 7y^2 + 14x - 56y - 25 = 0.$$

[6]

- (c) Given the points A = (6,0) and B = (8,6). Find the equation of a circle with centre A and passing through the point B. [5]
- (d) Write the complex number $3(\cos 135 + i \sin 135)$ in cartesian form x + iy.[4]

END OF EXAMINATION

<u>Useful Formulas</u>

1.
$$\sin^2 \theta + \cos^2 \theta = 1$$

2. $\sin(A + B) = \sin A \cos B + \cos A \sin B$
3. $\sin(A - B) = \sin A \cos B - \cos A \sin B$
4. $\cos(A + B) = \cos A \cos B - \sin A \sin B$
5. $\cos(A - B) = \cos A \cos B + \sin A \sin B$
6. $2\cos A \cos B = \cos(A + B) + \cos(A - B)$
7. $\sin 2A = 2\sin A \cos A$
8. $\cos 2A = \cos^2 A - \sin^2 A$
9. $\cos 2A = 2\cos^2 A - 1$
10. $\cos 2A = 1 - 2\sin^2 A$

Degrees	0°	30°	45^{o}	60°	90°
$\sin heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	<u>1</u> 2	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	