UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

TITLE OF PAPER	: CALCULUS FOR BUSSINESS STUDIES
COURSE NUMBER	: MS 102
TIME ALLOWED	: THREE (3) HOURS
INSTRUCTIONS	: 1. THIS PAPER CONSISTS OF
	SEVEN QUESTIONS.
	2. ANSWER ANY <u>FIVE</u> QUESTIONS.
	3. NON PROGRAMMABLE
	CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 3

3. Consider the function $f(x) = -2x^3 + 6x^2 - 3$.

(a) Find each of the following.

i. Stationary points.	[4 marks]
ii. Inflection points.	[2 marks]
iii. Intervals of increase and decrease.	[4 marks]
iv. Intervals of concavity.	[6 marks]

(b) Use all the information obtained in part 3(a) above to sketch the curve y = f(x). [4 marks]

QUESTION 4

- 4. (a) A company produces x items at a cost of C(x) = x³ 6x² + 15x. Given that the revenue generated after selling these items is R(x) = 6x after selling these x items, determine a production level that maximizes profit?
 [5 marks]
 - (b) Suppose $C(x) = x^3 20x^2 + 20000x$ is the cost of producing x items for a ceratain company. Find a production level that will minimize the average cost of making x items. [5 marks]
 - (c) A company manufactures x carts per month. If the monthly cost and price-demand functions are given by

$$C(x) = \frac{x^2}{100} + \frac{x}{2} + 8, \ p(x) = -\frac{x}{200} + 1$$

Find the following, for each month.

i. Revenue function.

[2 marks]

- ii. Find the marginal average cost when x = 30. Interpret your results. [4 marks]
- iii. Find the marginal profit when x = 30. Interpret your results. [4 marks]

QUESTION 5

5. Evaluate the following integrals.

(a)
$$\int \frac{x dx}{x^2 - 3x + 2}$$
 [5 marks]

(b)
$$\int \frac{1}{x^{\frac{2}{3}}(1+\sqrt[3]{x})}$$
 [5 marks]

(c)
$$\int \frac{5}{2} \sec x \tan x dx$$
 [5 marks]

(d)
$$\int x \ln x dx$$
 [5 marks]

QUESTION 6

i.
$$y = x^2 - 4$$
 and $y = -x^2 - 2x$.[5 marks]ii. $y = x^3$ and $y = x^2$.[5 marks]iii. $y = 2 \sin x$ and $y = \sin 2x$, $0 \le x \le \pi$.[5 marks]

(b) Evaluate
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} (8\cos x - \sec^2 x) dx.$$
 [5 marks]

QUESTION 7

7. (a) The monthly marginal cost of producing x calculators is given by

$$C'(x) = 12 + \frac{500}{x+1},$$

where C(x) is total cost in Emalangeni.

i. If fixed costs are E1800 per month, find the cost function. [5 marks]
ii. What is the average cost if 900 calculators are produced each month?
[5 marks]

(b) A company has marginal revenue marginal cost given by

$$R'(x) = \frac{2400}{(10+x)^2}$$
 and $C'(x) = 0.02x + 5$

If the company increases production from x = 30 to x = 40 units, compute the change in total profits. [5 marks]

(c) Given the demand function $D(x) = 70 - 0.05x^2$ and the supply function S(x) = 22 + 0.1x, find the producers surplus. [5 marks]