UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

: QUANTITATIVE TECHNIQUES

		••••	· · · · · · · · · · · · · · · · · · ·
COURSE NUMBER	•	MS 2	202
TIME ALLOWED	:	THR	EEE (3) HOURS
INSTRUCTIONS	:	1.]	THIS PAPER CONSISTS OF
		<u>c</u>	SEVEN QUESTIONS.
		2. <i>I</i>	ANSWER ANY <u>FIVE</u> QUESTIONS.
		3. I	NON PROGRAMMABLE
		(CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

TITLE OF PAPER

1. (a) Solve the linear system

3x + y - 2z = -72x + 2y + z = 9-x - y + 3z = 6

using Cramer's rule.

[10 marks]

[10 marks]

(b) Find and classify all critical points of the function $f(x,y) = x^3 - y^3 - 3x + 3y.$

QUESTION 2

2. (a) The economic cooperation between 3 industries A, B and C in a year is shown in table (1).

Output Input	A	В	С	External demand	Total output
A	25	15	10	50	100
В	15	10	5	10	40
С	10	20	5	15	50

Table 1: Transaction table for economy with 3 industries

If forecast external demand in 3 years is $[60, 70, 90]^T$, what should the total output be? [12 marks]

(b) Consider the following problem:

Maximize
$$f(x, y) = xy + y$$

subject to

$$x + y = 3$$

- i. Solve this problem using the method of Lagrange multipliers.
- ii. Determine the maximum value of the function f(x, y). [2 marks]

- 3. A company manufactures stools and tables. Each stool requires 1 hour of carpentry, 1 hour of painting and 2 hours of finishing. Similarly, a table needs 2 hours of carpentry, 1 hour of painting and 1 hour of finishing. During each production period, the carpentry, painting and finishing departments can only work for up to 10 hours, 7 hours and 12 hours respectively. The company makes E40 profit per stool and E30 profit per table.
 - (a) The problem is to determine the number of stools and tables that should be made in order to maximize profits. Formulate this as a linear programming problem.
 - (b) Solve linear programming problem by the graphical method. [12 marks]

QUESTION 4

- 4. Two dietary drinks are used to supply protein and carbohydrates. The first drink provides 1 unit of protein and 3 units of carbohydrates in each litre. The second drink supplies 2 units of protein and 2 units of carbohydrates in each litre. An athlete requires 3 units of protein and 5 units of carbohydrates. The first drink costs E2 per litre and the second costs E3 per litre.
 - (a) The problem is to find the amount of each drink the athlete should consume to minimize the cost and still meet the minimum dietary requirements. Formulate this as a linear programming problem. [8 marks]
 - (b) Solve linear programming problem by maximizing the dual. [12 marks]

5. An electricity company ships coal from 3 collieries, X_1 , X_2 and X_3 , to its 3 power stations, Y_1, Y_2 and Y_3 . Table (2) shows the demand, availabilities and unit costs of transportation.

	Y_1	Y_2	Y_3	Availability
X_1	3	3	2	50
X_2	4	2	3	80
X_3	3	4	3	62
Demand	60	60	72	

Table 2: Demand, supply and unit cost values

Starting with the north-west corner solution and using the stepping-stone method, determine the transportation pattern that minimises the total cost. [20 marks]

QUESTION 6

6. (a) A company wishes to assign its employees 1, 2, 3, 4, 5 to 5 different training courses based on their skills. The assignment costs are given as follows:

\mathbf{Cost}	A	В	С	D	Ε
1	14	7	3 12 4 7	7	27
-2	20	7 3 12	12	6	30
3	10	3	4	5	21
4	8	12	7	12	21
5	13	2 5	24	26	8

Determine the optimal assignment schedule that minimizes the total cost. [10 marks]

(b) A company has 4 employees 1, 2, 3, 4 to assign to 4 projects A, B, C, D based on the following scores:

Score	Α	В	С	D
1	20		22	18
2	25	28	15	21
3	27	20	23	26
4	24	22	23	22

Determine the optimal assignment schedule that maximizes the total score. [10 marks]

- 7. (a) A loan of E1300 is due in 20 weeks with interest charged at 15% per annum. The debtor makes a first payment of E520 in 5 weeks, followed by a payment of E480 in 13 weeks. Find the balance payable on due date under the Merchant's rule. [6 marks]
 - (b) A notebook computer can be purchased using only one of two options. The first option is to pay E2200 cash. The second option requires a down payment of E700 followed by payments of E100 every month for 18 months. If interest charged is at rate 11% compounded monthly, are the two options equivalent? [8 marks]
 - (c) What sum of money should be set aside to provide an income of E850 every 3 months for the next 5 years if the money earns interest at rate 7.5% compounded quarterly? [6 marks]