University of Swaziland

/ ¢.

Final Examination, December 2012

BA Social Science I

Title of Paper: Elementary Quant. Techniques ICourse Number: MS011Time Allowed: Three (3) hoursInstructions:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Useful Formulae

Arithmetic Progressions

$$T_n = T_1 + (n-1)d, \qquad S_n = \begin{cases} \frac{n}{2} [T_1 + T_n] \\ \frac{n}{2} [2T_1 + (n-1)d] \end{cases}$$

Geometric Progressions

$$T_n = T_1 r^{n-1},$$
 $S_n = \frac{T_1(1-r^n)}{1-r}.$

Binomial Theorem

$$(a+b)^{n} = a^{n} + {}_{n}C_{1}a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + {}_{n}C_{3}a^{n-3}b^{3} + \dots + b^{n}.$$

Matrices

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11}a_{22} - a_{12}a_{21}.$$

Logarithms and Exponential Functions

•
$$\log_b y = x \iff b^x = y.$$

•
$$\log_b AB = \log_b A + \log_b B$$

•
$$\log_b\left(\frac{A}{B}\right) = \log_b A - \log_b B$$

• $\log_b A^n = n \log_b A$

Exponential Growth/Decay

		Continuous
Growth	$Q(t) = Q_0 (1+r)^t$	$Q(t) = Q_0 e^{rt}$
Decay	$Q(t) = Q_0(1-r)^t$	$Q(t) = Q_0 e^{-rt}$

Question 1

(a) Given the matrices

$$B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & -2 & 1 \\ 3 & 0 & 2 \end{pmatrix}$$

work out (where possible)

i.	2B+C	ii.	$B^T - C$
iii.	BC	iv.	BD
v.	DC		

[10 marks]

(b) Work out

1	-1	0	
0	-2	1	[4 marks]
1	1	1	

(c) Solve the system

 $\begin{array}{rcl} 2x-5y &=& -26\\ 6x+7y &=& 10 \end{array}$

using Cramer's rule.

[6 marks]

Question 2

(a) Consider the arithmetic progression

100, 92, 84, 76,

Find

i.	the next 2 terms	[2 marks]
ii.	the values of T_1 and d	[1 mark]
iii.	the formula for the n -th term	[3 marks]
iv.	the 50th term	[1 mark]

v. sum of the first 30 terms

(b) A parent sets up a fund for his child by making monthly savings. He deposits E700, E760, and E820 at the end of the first, second and third months, respectively - the amounts increasing by E60 every month. Find

i. the instalment after 1 year	[2 marks]
ii. when the intalment will reach E1,600	[3 marks]
iii. the total deposited after 2 years	[4 marks]

Question 3

(a) Simplify and leave your answer in terms of positive indices

i.	$A^{-3} imes A^7$	[1 mark]
ii.	$A^3 \div A^{-7}$	[1 mark]
iii.	$\left(A^{-3}\right)^7$	[1 mark]
iv.	$\left(\frac{A^{-3}}{A^7}\right)^{-2}$	[2 marks]

v.
$$\left(\frac{A^{-3}}{A^{-7}}\right)^2$$
 [2 marks]

(b) Use the binomial theorem to expand

 $(x-2y)^5$

and simplify term by term.

(c) In the binomial expansion of

$$\left(1+u^2\right)^{20},$$

find

i.	the first 4 terms	[4 marks]
ii.	the 17th term	[3 marks]

[6 marks]

[4 marks]

Question 4

(a) Use long division to work out

$$\frac{x^3 - 2x^2 + 3x - 4}{x + 2}.$$
 [8 marks]

(b) Use synthetic division to work out

$$\frac{x^3 + x^2 - 2x - 4}{x + 2}.$$
 [4 marks]

(c) Consider the polynoomial

$$P(x) = x^3 + 2x^2 + Ax - 6.$$

where A is a constant.

i.	Find the value of A given that $(x + 1)$ is a factor	of $P(x)$.
		[2 marks]
ii.	By first dividing by $(x + 1)$, completely factorise	P(x)
		[4 marks]
iii.	Hence find the roots of $P(x) = 0$.	[2 marks]

Question 5

(a) Find the value of

i.	$\log_{3} 9,000$	[2 mar]	٢s]
ii.	$\log_{10} 0.001$	[2 marl	(s

(b) Solve for x

i.	$3^{x-1} = 81$	[3 marks]
ii.	$\log_3(4x-7) = 2$	[3 marks]
iii.	$\log x + \log x = 4$	[3 marks]

(c) A company buys a new vehicle for E450,000 on 01 January 2012. If its value depreciates by 7.8% per year (re-valued once a year), find the

	i.	value of the	vehicle after	5 years	:	2	mark	3	;]
--	----	--------------	---------------	---------	---	---	------	---	----

ii. the date corresponding to the *half-life* of the vehicle.

[5 marks]

Question 6

(a) The coordiantes of two cities are A(-20, 40) and B(30, -60), where the coordinates are in kilometres. Find the

i.	distance between the 2 cities, correct to the neares	t kilometre
		[3 marks]
ii.	equation of the straight line AB	[4 marks]
iii.	coordinates of the midpoint of AB	[2 marks]
iv.	equation of the perpendicular bisector of AB	[4 marks]

(b) Consider the equation of the straight line

$$\ell: \quad 12x - 4y = 7.$$

Find the

i.	gradient of the line ℓ	[3 marks]
ii.	equation of a straight line parallel to	ℓ passing through $(1,2)$
		[4 marks]

Question 7

(a) Consider the geometric progression

 $2, 6, 18, \cdots$.

Find

i.	the next 2 terms	[2 marks]
ii.	the values of T_1 and r	[1 mark]
iii.	the formula for the n -th term	[2 marks]
iv.	the 10th term	[2 marks]
v.	sum of the first 10 terms	[3 marks]

(b) Find the value of

$$\sum_{n=0}^{100} (6n+5)$$
 [3 marks]

(c) The population of a city grows according to

$$P(t) = 16,000e^{0.02t}$$

where t is the number of years from year 2000. Find

ii. the population of the city in 2010;[2 mark]iii. the date when the population will be double that in 2000.	i.	the population	of the city in year 2000;	[2 mark	:s]
iii. the date when the population will be double that in 2000.	ii.	the population	of the city in 2010;	[2 mark	s]
	iii.	the date when	the population will be double that	in 2000.	

[3 marks]