University of Swaziland

Final Examination, December 2012

BA Social Science I

Title of Paper : Elementary Quant. Techniques I
Course Number : MS011
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This Paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Useful Formulae

Arithmetic Progressions

$$
T_{n}=T_{1}+(n-1) d, \quad S_{n}=\left\{\begin{array}{l}
\frac{n}{2}\left[T_{1}+T_{n}\right] \\
\frac{n}{2}\left[2 T_{1}+(n-1) d\right]
\end{array}\right.
$$

Geometric Progressions

$$
T_{n}=T_{1} r^{n-1}, \quad S_{n}=\frac{T_{1}\left(1-r^{n}\right)}{1-r}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+{ }_{n} C_{1} a^{n-1} b+{ }_{n} C_{2} a^{n-2} b^{2}+{ }_{n} C_{3} a^{n-3} b^{3}+\cdots+b^{n}
$$

Matrices

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} .
$$

Logarithms and Exponential Functions

- $\log _{b} y=x \quad \Longleftrightarrow \quad b^{x}=y$.
- $\log _{b} A B=\log _{b} A+\log _{b} B$
- $\log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B$
- $\log _{b} A^{n}=n \log _{b} A$

Exponential Growth/Decay

	Discontinuous (re-valued once a year)	Continuous
Growth	$Q(t)=Q_{0}(1+r)^{t}$	$Q(t)=Q_{0} e^{r t}$
Decay	$Q(t)=Q_{0}(1-r)^{t}$	$Q(t)=Q_{0} e^{-r t}$

Question 1

(a) Given the matrices

$$
B=\left(\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right), \quad C=\left(\begin{array}{rr}
3 & 2 \\
-1 & 0
\end{array}\right) \quad D=\left(\begin{array}{rrr}
1 & -2 & 1 \\
3 & 0 & 2
\end{array}\right)
$$

work out (where possible)
i. $2 B+C$
ii. $B^{T}-C$
iii. $B C$
iv. $B D$
v. $D C$
(b) Work out

$$
\left|\begin{array}{rrr}
1 & -1 & 0 \\
0 & -2 & 1 \\
1 & 1 & 1
\end{array}\right| . \quad \quad[4 \text { marks] }
$$

(c) Solve the system

$$
\begin{aligned}
& 2 x-5 y=-26 \\
& 6 x+7 y=10
\end{aligned}
$$

using Cramer's rule.
[6 marks]

Question 2

(a) Consider the arithmetic progression

$$
100,92,84,76, \cdots
$$

Find
i. the next 2 terms
ii. the values of T_{1} and d
iii. the formula for the n-th term
iv. the 50 th term
v. sum of the first 30 terms
(b) A parent sets up a fund for his child by making monthly savings. He deposits E700, E760, and E820 at the end of the first, second and third months, respectively - the amounts increasing by E60 every month. Find
i. the instalment after 1 year
ii. when the intalment will reach E1,600
iii. the total deposited after 2 years

Question 3

(a) Simplify and leave your answer in terms of positive indices
i. $\quad A^{-3} \times A^{7}$
ii. $\quad A^{3} \div A^{-7}$
iii. $\left(A^{-3}\right)^{7}$
iv. $\left(\frac{A^{-3}}{A^{7}}\right)^{-2}$
[2 marks]
v. $\left(\frac{A^{-3}}{A^{-7}}\right)^{2}$
[2 marks]
(b) Use the binomial theorem to expand

$$
(x-2 y)^{5}
$$

and simplify term by term.
(c) In the binomial expansion of

$$
\left(1+u^{2}\right)^{20}
$$

find
i. the first 4 terms
ii. the 17 th term

Question 4

(a) Use long division to work out

$$
\frac{x^{3}-2 x^{2}+3 x-4}{x+2}
$$

(b) Use synthetic division to work out

$$
\frac{x^{3}+x^{2}-2 x-4}{x+2} . \quad[4 \text { marks }]
$$

(c) Consider the polynoomial

$$
P(x)=x^{3}+2 x^{2}+A x-6 .
$$

where A is a constant.
i. Find the value of A given that $(x+1)$ is a factor of $P(x)$.
[2 marks]
ii. By first dividing by $(x+1)$, completely factorise $P(x)$
iii. Hence find the roots of $P(x)=0$.

Question 5

(a) Find the value of
i. $\log _{3} 9,000$
[2 marks]
ii. $\log _{10} 0.001$
[2 marks]
(b) Solve for x
i. $\quad 3^{x-1}=81$
[3 marks]
ii. $\quad \log _{3}(4 x-7)=2$
iii. $\log x+\log x=4$ [3 marks]
(c) A company buys a new vehicle for E450,000 on 01 January 2012. If its value depreciates by 7.8% per year (re-valued once a year), find the
i. value of the vehicle after 5 years; [2 marks]
ii. the date corresponding to the half-life of the vehicle.

Question 6

(a) The coordiantes of two cities are $A(-20,40)$ and $B(30,-60)$, where the coordinates are in kilometres. Find the
i. distance between the 2 cities, correct to the nearest kilometre [3 marks]
ii. equation of the straight line $A B$ [4 marks]
iii. coordinates of the midpoint of $A B$
iv. equation of the perpendicular bisector of $A B$
(b) Consider the equation of the straight line

$$
\ell: \quad 12 x-4 y=7
$$

Find the
i. gradient of the line ℓ
ii. equation of a straight line parallel to ℓ passing through $(1,2)$

Question 7

(a) Consider the geometric progression

$$
2,6,18, \cdots .
$$

Find
i. the next 2 terms
ii. the values of T_{1} and r
iii. the formula for the n-th term
iv. the 10th term
v. sum of the first 10 terms
(b) Find the value of

$$
\sum_{n=0}^{100}(6 n+5)
$$

[3 marks]
(c) The population of a city grows according to

$$
P(t)=16,000 e^{0.02 t}
$$

where t is the number of years from year 2000. Find
i. the population of the city in year 2000; [2 marks]
ii. the population of the city in 2010 ; [2 marks]
iii. the date when the population will be double that in 2000 .
[3 marks]

