University of Swaziland

Final Examination May 2013

BA in Social Sciences I

Title of Paper : Elementary Quantitative Techniques II

Course Number : MS012

٤

Time Allowed : Three (3) hours

:

Instructions

- 1. This paper consists of SEVEN questions printed on FIVE pages.
- 2. Each question is worth 20%.

3. Answer ANY FIVE questions.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Evaluate

a.	$\lim_{x \to 4} (x^2 + 7x - 1)$	[2 marks]
b.	$\lim_{x \to 3} \frac{4x + 8}{x^2 - 2x - 1}$	[3 marks]
c.	$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 - 4}$	[5 marks]
d.	$\lim_{x \to \infty} \frac{2x^2 - 4x + 5}{x^2 + 3x - 7}$	[5 marks]
e.	$\lim_{x \to \infty} \frac{4x - 7}{3x^2 - x + 9}$	[5 marks]

Question 2

(a) Find f'(x) using the *limit definition* for

$$f(x) = 3x^2 + 7.$$
 [12 marks]

(b) Differentiate

i.	$f(x) = x^8 - 3x^4 + 9$	[2 marks]
ii.	$H(X) = 8X^{\frac{3}{4}} - 9X^{-\frac{2}{3}}$	[3 marks]
iii.	$G(t)=\frac{2}{t^2}-\frac{4}{t^4}$	[3 marks]

(a) Differentiate

i.	$y = e^{x^2 - 3x}$	[2 marks]
ii.	$y = \ln 7x$	[2 marks]
iii.	$y = \ln \left(x^7 ight)$	[2 marks]
iv.	$y = \ln\left(4x^2 - 7\right)$	[2 marks]
v.	$y = \sin(3x - 2)$	[2 marks]
vi.	$y = \left(5x^2 + 7\right)^{14}$	[3 marks]

(b) Use the quotient rule to differentiate

$$G(x) = \frac{x}{5x+2}.$$
 [7 marks]

Question 4

(a) Find the indicated derivative i. $y = 5x^2 - \frac{3}{x^2}$, y''' [5 marks] ii. $y = \cos 3x$, y^{iv} [5 marks] (b) Integrate i. $\int (4x^3 - 2x + 5) dx$ [2 marks] ii. $\int (10X^{\frac{2}{3}} - 9X^{-\frac{5}{2}}) dX$ [4 marks] iii. $\int \left(\frac{4}{x} - \frac{3}{x^4}\right) dx$ [4 marks]

(a) Integrate
i.
$$\int 6e^{2x} dx$$
 [2 marks]
ii. $\int 12 \sin 3x dx$ [2 marks]
iii. $\int 12 \cos 4x dx$ [2 marks]

(b) Use tabular integration to evaluate

$$\int 48x^2 e^{2x} \mathrm{d}x. \qquad \qquad [6 \text{ marks}]$$

(c) Find the values of A and B such that

$$\frac{x+4}{x(x+2)} = \frac{A}{x} + \frac{B}{x+2}.$$
 [5 marks]

Hence evaluate

$$\int \frac{x+4}{x(x+2)} \,\mathrm{d}x.$$
 [3 marks]

(a) For each function, find the stationary points and classify them as relative maximum or minimum. Also find the *y*-intercept and hence sketch the graph of the given function.

i.
$$y = 3 + 20x - 2x^2$$
 [6 marks]

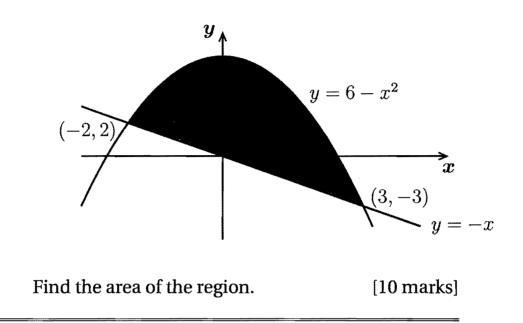
- ii. $y = x^3 + 9x^2 5$ [9 marks]
- (b) The profit P of a company is given by

$$P(x) = 50x - 0.1x^2 - 150,$$

where x is the number of units sold per month. Find

- i. The number of units that give maximun profit [3 marks]
- ii. The maximum profit possible per month. [2 marks]

Question 7


(a) Evaluate

i.
$$\int_{0}^{2} (6x^{2} + 8x - 3) dx$$
 [3 marks]
ii. $\int_{0}^{1} \left(\frac{10}{2} - \frac{8}{2}\right) dx$ [3 marks]

$$\int_{-1} \left(\frac{10}{x^3} - \frac{0}{x^5} \right) \mathrm{d}x \qquad [3 \text{ marks}]$$

iii.
$$\int_{1}^{4} \left(9X^{\frac{1}{2}} - X^{-\frac{1}{2}}\right) dX$$
 [4 marks]

(b) The diagram below (not drawn to scale) shows the region enclosed between the parabola $y = 6-x^2$ and the sraight line y = -x.

