UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/2013

TITLE OF PAPER : ALGEBRA, TRIGONOMETRY ANDANALYTIC GEOMETRY
COURSE NUMBER : MS 101
TIME ALLOWED : THREE (3) HOURS
INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS.
3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

QUESTION 1

1. (a) Find the values of a and b for which the polynomial $x^{3}+a x^{2}+b x-4$ is exactly divisible by $x^{2}+x-2$.
[7 marks]
(b) Use both the remainder theorem and synthetic division to find all the real roots of the equation $3 x^{4}+5 x^{3}-10 x^{2}-20 x-8=0$.

QUESTION 2

2. (a) Evaluate $\log _{8} 33$.
[3 marks]
(b) Solve the following equations for x.
i. $3^{2 x-1}=37$.
ii. $\log _{2} x+\log _{2} 8=6$.
iii. $2 e^{2 x}-7 e^{x}+3=0$.
[4 marks]
(c) How long will it take for money in an account that is compounded continuously at 5% interest to trebble?

QUESTION 3

3. (a) Express $\cos 725^{\circ}$ in terms of an acute angle.
[3 marks]
(b) Prove the following trigonometric identities.
i. $\tan x+\cot x=2 \operatorname{cosec} 2 y$. (NB $\operatorname{cosec} x=\csc x$.)
ii. $\frac{\sin y+\sin 3 y}{\cos y+\cos 3 y}=\tan 2 y$
[9 marks]
(c) Solve the trigonometric equation

$$
\sin x=\sin 2 x
$$

and give your answers in the range $0^{\circ} \leq x<360^{\circ}$.
[4 marks]

QUESTION 4

4. (a) Find
i. the constant term, and
ii. the term involving x^{6},
in the binomial expansion of $\left(x+\frac{1}{2 x}\right)^{8}$.
[5,5 marks]
(b) i. Write down the first 4 terms of the binomial expansion of $\frac{1}{\sqrt{1-x}}$.
ii. Use your result in part $4(\mathrm{~b})$ i above to estimate $\frac{1}{\sqrt{99}}$ correct to 4 decimal places. [6 marks]

QUESTION 5

5. (a) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), \text { and } C=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

i. Find $(A-B)^{T}$.
ii. Verify that $A^{T}-B^{T}=(A-B)^{T}$.
iii. Find $A^{T} C-B^{T} C$.
[3 marks]
(b) Solve the linear system

$$
\begin{aligned}
x & -z
\end{aligned}=1
$$

using Cramer's rule. Leave your answers as fractions. [10 marks]

QUESTION 6

6. (a) Given the circle

$$
x^{2}+10 x+y^{2}-4 y=7
$$

find its centre and radius.
(b) Write down the equation of the circle that is tangent to the y-axis and has centre ($-3,2$).
(c) Find the equation of the line which is parallel to the line $3 x-2 y-4=0$ and which passes through the point $(0,2)$.
(d) Write down the equation of the line which perpendicular to the line $3 x-4 y=2$ and which passes through the point $(-1,1)$. [5 marks]

QUESTION 7

7. (a) The sum of an infinite geometric progression is $\frac{8}{3}$ and the first term is 2 . Find the common ratio.
(b) Use mathematical induction to prove that

$$
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

for any positive integer n.
(c) Simplify the complex number

$$
\sqrt{2}\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)
$$

without using a calculator.
(d) Solve the equation

$$
z^{2}=4 \bar{z}
$$

and give your answer(s) in the form $z=x+i y$.

