UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, JULY 2013

B.A.S.S. I /B.Comm I, D.COM I (IDE)

TITLE OF PAPER	:	ALGEBRA, TRIGONOMETRY AND
		ANALYTIC GEOMETRY
COURSE NUMBER	:	MS 101 AND IDE MS101
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

(a) Use the long division method to find the quotient and remainder when $P(x)=x^{4}+x^{3}-x-3$ is divided by $D(x)=x+3$
(b) By using the remainder theorem and synthetic division, find all the real roots of the polynomial $2 x^{4}-2 x^{3}-14 x^{2}+2 x+12=0$.
(c) The expression $a x^{3}+b x^{2}-3 x+18$ has $x-2$ as a factor. When the expression is divided by $x-1$ the remainder is 10 . Find the values of a and b.

Question 2

(a) Solve the following equations

$$
\begin{equation*}
\text { (i) } \log _{2}(x)+\log _{2}(x+2)=3 . \tag{5}
\end{equation*}
$$

(ii) $3^{2 x+1}=5^{x+1}$.
(b) Find the annual interest rate required to treble a certain amount if the interest is compounded monthly for 10 years.
(c) A student wants to buy a new computer after 4 years that will cost $E 8000$. If she only has $E 4000$ available to deposit now, what interest rate is required for it to increase to $E 8000$ in 4 years if the interest is compounded continuously.

Question 3

(a) Prove the trigonometric identity

$$
(\sin x+\cos x)(\tan x+\cot x)=\sec x+\csc x
$$

[5]
(b) Solve the trigonometric equation

$$
2 \sin ^{2} x+\sin x-1=0
$$

giving all solutions between 0° and 360°.
(c) Convert the decimal 1.3712712712.... into a common fraction.
(d) Find the sum of the following progression

$$
2+5+8+11+\ldots+1001
$$

Question 4

(a) For the following expansion $\left(2 x^{2}-\frac{1}{4 x^{2}}\right)^{22}$, find the
(i) 8 th term.
(ii) constant term.
[6]
(b) Write the first four terms of the expansion $\frac{1}{\sqrt{1+x}}$ and use the expansion to estimate $\frac{1}{\sqrt{1.03}}$ correct to five significant figures.

Question 5

(a) Use Cramer's rule to solve the following system of equations

$$
\begin{aligned}
2 x-y+2 z & =2 \\
x+10 y-3 z & =5 \\
-x+y+z & =-3
\end{aligned}
$$

(a) Calculate $(A-B) C^{T}$ if the matrices A, B and C are given by

$$
A=\left[\begin{array}{cc}
1 & -2 \\
4 & 4 \\
6 & 3 \\
3 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 5 \\
-2 & -4 \\
1 & 3 \\
3 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1 \\
2 & 1 \\
1 & 0 \\
3 & 2
\end{array}\right]
$$

Question 6

(a) Write the equation of the circle with center $(2,-7)$ and which passes through the point $(-2,-4)$.
(b) Find the center and radius of the circle given by $x^{2}+y^{2}+3 x-5 y-\frac{1}{2}=0$. [4]
(c) Find the equation of a straight line passing through the intersection of $3 x-y=9$ and $x+2 y=-4$ and is perpendicular to $2 y+8 x=3$.
(d) Find an equation of the line parallel to the line $y=-2 x+3$ and which passes through the point $(2,5)$.

Question 7

(a) Express the following expressions in the complex form
(i) $(3-4 i)(-3-2 i)$.
(ii) $\frac{3-4 i}{2-3 i}$.
(iii) $\frac{\sqrt{2}}{3}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$. (without using a calculator)
(c) Using mathematical induction prove that

$$
1+3+6+\ldots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}
$$

