University of Swaziland

Final Examination - November 2013

BASS I

Title of Paper : Elementary Quantitative Techniques I
Course Number : MS011
Time Allowed : Two (2) hours
\section*{Instructions:}

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 2 (out of 4) questions in Section B.
4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A
 Answer ALL Questions in this section

A. 1 a. Give a concise definition of each of the following terms.
i. The transpose of a matrix. [2 marks]
ii. The half-life of a quantity that decays exponentially.
[2 marks]
iv. A geometric progresion.
[2 marks]
b. Simplify
i. $\frac{2 x+9}{3}+\frac{x-6}{2}$,
[5 marks]
ii. $\frac{1}{x+2}+\frac{1}{x-2}$,
[5 marks]
iii. $\frac{30 a^{2} b^{-4}}{x^{-2} y^{3}} \div \frac{18 a^{-3} b^{2}}{x^{4} y^{2}}$ (expressing your answer in terms of positive indices), [5 marks]
iv. $\frac{a^{2}-a-2}{2 a^{2}+a-1}$,
[7 marks]
A. 2 a. Use a calculator to compute (for non-exact answers, express correct to 3 s.f.)
i. ${ }_{45} C_{3}$,
[1 marks]
ii. $\log _{5} 4500$, [3 marks]
iii. $\ln 3000$.
[1 marks]
b. Use the quadratic formula to solve (expressing your answer correct to 3 s.f.)

$$
2 x^{2}=29 x+3 .
$$

c. Solve the simultaneous equations

$$
\begin{aligned}
& 7 x+5 y=32 \\
& 3 x+4 y=23 .
\end{aligned}
$$

d. Use synthetic division to find the quotient and remainder of

$$
\frac{x^{3}-x^{2}+x-1}{x-2}
$$

Section B

Answer ANY 2 Questions in this section

B. 1 a. Given that

$$
A=\left(\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right), \quad B=\left(\begin{array}{rr}
-2 & 1 \\
0 & 3
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & 0 & -1 \\
2 & 3 & 5
\end{array}\right),
$$

work out
i. $2 A+B^{T}$,
[2 marks]
ii. $A^{T} B$,
[4 marks]
iii. $C^{T} A$.
[4 marks]
b. Use Cramer's rule to solve

$$
\begin{aligned}
x+2 y+3 z & =0 \\
& =2 \\
3 x-y+z & =-1 .
\end{aligned} \quad[15 \text { marks }]
$$

B. 2 a. For the GP

$$
3,6,12, \cdots
$$

find
i. the formula for the n-th term,
ii. the 12th term using the formula in i ., [2 marks]
iii. the sum of the first 12 terms.
[4 marks]
b. Find the value of
i. $5+10+15+20+25+\cdots+1,000$
[4 marks]
ii. $\sum_{n=0}^{60}(4 n+7)$
[6 marks]
c. Given that $x+1$ is a factor of the polynomial

$$
P(x)=x^{3}+A x^{2}+B x+1,
$$

while dividing $P(x)$ by $x-2$ leaves a remainder of 15 , find the values of A and B.

B. 3

a. Consider the straight line between $A(-7,8)$ and $B(1,-8)$. Find
i. the length of $A B$ correct to 3 s.f.,
ii. the gradient of $A B$, [2 marks]
iii. the equation of $A B$, [4 marks]
iv. the coordinates of the midpoint of $A B$.
b. Use the binomial theorem to expand and simplify term by term

$$
(3 x+2)^{4} .
$$

c. In the binomial expansion of

$$
(1-2 x)^{18},
$$

find
i. the first 4 terms,
ii. the 9th term.

B. 4

a. Solve (for non-exact answers, express correct to 3 s.f.)

| i. $3^{x-2}=243$, | $[3$ marks $]$ |
| :--- | :--- | :--- |
| ii. $\quad 5^{x}=900$, | $[4$ marks $]$ |
| iii. $\log _{3}(4 x+1)=2$, | $[4$ marks $]$ |
| iv. $\quad \log x-\log 5=2$. | $[5$ marks $]$ |

b. On 01 January 2013, a sum of $E 7,500$ was invested in an account that pays an interest of 8.5% per annum compounded continuously. The total amount in the account is given by

$$
A(t)=7,500 e^{0.085 t},
$$

where t is the number of years after 01 January 2013. Find the
i. total amount after 5 years,
ii. the date when the total amount doubles.

