University of Swaziland

Į

Final Examination – November 2013

BASS I

Title of Paper: Elementary Quantitative Techniques ICourse Number: MS011Time Allowed: Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 (out of 4) questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section B Answer ANY 2 Questions in this section			
B.1	a. Given that		
	$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ 0 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$	$\begin{pmatrix} -1\\5 \end{pmatrix}$,	
	work out		
	i. $2A + B^T$,	[2 marks]	
	ii. $A^T B$,	[4 marks]	
	iii. $C^T A$.	[4 marks]	
	b. Use Cramer's rule to solve		
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[15 marks	
B.2	a. For the GP 3, 6, 12, · · ·		
	find		
	i. the formula for the n -th term,	[2 marks]	
	ii. the 12th term using the formula in i.,	[2 marks]	
	iii. the sum of the first 12 terms.	[4 marks]	
	b. Find the value of		
	i. $5 + 10 + 15 + 20 + 25 + \dots + 1,000$	[4 marks]	
	ii. $\sum_{n=0}^{60} (4n+7)$	[6 marks]	
	c. Given that $x + 1$ is a factor of the polynomial		
	$P(x) = x^3 + Ax^2 + Bx + 1,$		
	$P(x) = x^3 + Ax^2 + Bx + 1,$		

Y

B.3

a. Consider the straight line between A(-7, 8) and B(1, -8). Find

i.	the length of AB correct to 3 s.f.,	[2 marks]
ii.	the gradient of AB ,	[2 marks]
iii.	the equation of AB ,	[4 marks]
iv.	the coordinates of the midpoint of AB.	[2 marks]

b. Use the *binomial theorem* to expand and simplify term by term

$$(3x+2)^4$$
. [7 marks]

c. In the binomial expansion of

 $(1-2x)^{18}$,

find

i. the first 4 terms,[5 marks]ii. the 9th term.[3 marks]

i. me sin term.

B.4

a. Solve (for non-exact answers, express correct to 3 s.f.)

i.	$3^{x-2} = 243,$	[3 marks]
ii.	$5^x = 900,$	[4 marks]
iii.	$\log_3(4x+1) = 2,$	[4 marks]

- iv. $\log x \log 5 = 2$. [5 marks]
- b. On 01 January 2013, a sum of E7,500 was invested in an account that pays an interest of 8.5% per annum compounded continuously. The total amount in the account is given by

$$A(t) = 7,500e^{0.085t},$$

where t is the number of years after 01 January 2013. Find the

i.	total amount after 5 years,	[3 marks]
----	-----------------------------	-----------

ii. the date when the total amount doubles. [6 marks]