University of Swaziland

Final Examination, December 2013

B.A.S.S. I , B.Comm I, D.Comm I (IDE)

Title of Paper : Algebra, Trigonometry and Analytic Geometry
Course Code : MS101
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

1.1. State the remainder theorem.
1.2. By using the factor theorem, state which of the following
(a) $x+2$.
(b) $2 x-3$.
[1]
are factors of the polynomial

$$
P(x)=2 x^{3}-3 x^{2}-2 x+3
$$

1.3. Use the long division method to find the quotient and remainder when

$$
\begin{equation*}
P(x)=x^{4}+2 x^{2}+5 x+1 \tag{5}
\end{equation*}
$$

is divided by $D(x)=x-1$.
1.4. Solve the following equations
(a) $\log _{2}(x+1)-\log _{2}(2-x)=3$.
(b) $2^{x+1}=3^{x-1}$.
(c) $x+\sqrt{-\frac{1}{25}}=0$.
1.5. Given

$$
A=\left[\begin{array}{ccc}
-1 & 3 & -4 \tag{3}\\
0 & 2 & 1 \\
2 & -3 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
2 & 3
\end{array}\right]
$$

calculate
(a) $|A|$.
(b) $A^{T} B$.
1.6. Find the equation of a straight line passing through $(1,-1)$ and is perpendicular to the line $3 y-6 x=1$.
1.7. Given $z_{1}=4+2 i, \quad z_{2}=5+i$ and $z_{3}=-8+3 i$. Write

$$
\frac{z_{1}}{z_{2}}+\bar{z}_{3}
$$

in the form $a+i b$. [6]
1.8. If $\tan \theta=\frac{3}{4}$, find all possible values of $\sin \theta$ and $\cos \theta$. [4]

SECTION B: ANSWER ANY 3 QUESTIONS

2. Given the following polynomial

$$
P(x)=x^{4}-x^{3}-19 x^{2}+49 x-30
$$

(a) List all the possible roots of $P(x)$.
(b) Find the number of positive real zeros(roots) of $P(x)$. [3]
(c) Find the number of negative real zeros(roots) of $P(x)$. [3]
(d) Use the factor theorem and synthetic division (ONLY) to find the factors of $P(x)$.
3. (a) Given an arithmetic progression

$$
\begin{equation*}
50,46,42, \cdots,-62 \tag{5}
\end{equation*}
$$

find the number of terms that are in the progression.
(b) John wants to buy a new car after 5 years that will cost him E100000. If he only has $E 60000$ to deposit now, what interest rate is required for it to increase to $E 100000$ in 5 years if the interest is compounded monthly. [5]
(c) Without using a calculator find the exact value of $\sin 1485^{\circ}$.
(d) Find the centre and radius of a circle defined by

$$
x^{2}-6 x+y^{2}+4 y-3=0 .
$$

4. (a) Given the following expansion

$$
\left(2 x^{3}+\frac{1}{2 x^{2}}\right)^{20}
$$

find the
i. first 3 terms.
ii. term involving x^{-5}.
iii. constant term.
(b) Use Cramer's rule to solve the following system of equations

$$
\begin{aligned}
2 x-y-2 z & =-3 \\
x+3 y+z & =-1 \\
5 x-4 y+3 z & =10 .
\end{aligned}
$$

5. (a) Prove the following trigonometric identity

$$
\sec ^{2} \theta+\csc ^{2} \theta=\sec ^{2} \theta \csc ^{2} \theta
$$

(b) Solve the following equations
i. $\sin x-2 \sin x \cos x=0, \quad 0^{\circ} \leq x \leq 360^{\circ}$
ii. $\log _{x}\left(\frac{1}{8}\right)=3$.
(c) Convert $1.701010101 \cdots$ into an equivalent fraction.
6. (a) Prove by mathematical induction that the formula

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

is valid for all positive integers.
(b) Give the binomial expansion for $\frac{1}{\sqrt[5]{1-2 x}}$ up to and including x^{3} (where x is small). Use this expression to find $\frac{1}{\sqrt[5]{0.93}}$. (6 decimal places) . [10]

