## University of Swaziland

Supplementary Examination, July 2014

B.A.S.S. I , B.Comm I, D.Comm I (IDE)

Title of Paper<br>Algebra, Trigonometry and Analytic Geometry

Course Code : MS101
Time Allowed : Three (3) Hours

## Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth $20 \%$.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

## SECTION A: ANSWER ALL QUESTIONS

1.1. State the factor theorem. [2]
1.2. By using the remainder theorem state which of the following values
(a) $x=-\frac{5}{4}$.
(b) $x=\frac{7}{2}$.
are roots of the polynomial

$$
P(x)=6 x^{4}-35 x^{3}+27 x^{2}+107 x-105
$$

1.3. Use the long division method to find the quotient and remainder when

$$
\begin{equation*}
P(x)=14 x^{4}-16 x^{3}-54 x^{2}-8 \tag{5}
\end{equation*}
$$

is divided by $D(x)=x-3$.
1.4. Solve the following equations
(a) $x^{\frac{2}{3}}=8$.
(b) $\log _{2}(2+x)-\log _{2}(2 x-1)=2$.
(c) $3^{1-2 x}=5^{2-x}$.
(d) $x^{2}+3 x+9=0$.
1.5. Without using a calculator, find the exact value of $\sin 1215^{\circ}$.
1.6. Find three numbers in an arithmetic progression such that their sum is 27 and their product is 504 .
1.7. Find the determinant of the matrix

$$
A=\left(\begin{array}{lll}
2 & -1 & 3 \\
3 & -2 & 1 \\
4 & -3 & 2
\end{array}\right)
$$

1.8. Given $z_{1}=2+3 i, z_{2}=1-i$ and $z_{3}=3+4 i$, express $\frac{\overline{z_{1}}+z_{2}}{z_{3}}$ in the form $a+i b$.

## SECTION B: ANSWER ANY 3 QUESTIONS

2. Given the following polynomial

$$
\begin{equation*}
P(x)=3 x^{4}-x^{3}-29 x^{2}+9 x+18 \tag{3}
\end{equation*}
$$

(a) List all the possible roots of $P(x)$.
(b) Find the number of positive real zeros(roots) of $P(x)$. [3]
(c) Find the number of negative real zeros(roots) of $P(x)$. [3]
(d) Use the Remainder theorem and synthetic division (ONLY) to find the roots of $P(x)$.
3. (a) Prove the following trigonometric identity

$$
\sec ^{2} \theta+\csc ^{2} \theta=\sec ^{2} \theta \csc ^{2} \theta
$$

(b) Solve the following equations
$\begin{array}{lll}\text { i. } 2 \cos ^{2} x+3 \sin x-3=0, & 0^{\circ} \leq x \leq 360^{\circ} & {[7]} \\ \text { ii. } z^{2}-(3-i) z+4=0 . & & {[8]}\end{array}$
[8]
4. (a) Use Cramer's rule to solve the following system of equations

$$
\begin{array}{r}
x+2 y+z=1 \\
x-y-z=0 \\
2 x+y+z=3
\end{array}
$$

(b) Find the sum of the following series

$$
1+5+9+\ldots+793
$$

(c) Convert $2.734343434343434 \cdots$ into and equivalent fraction.
5. (a) Given the following expansion

$$
\left(\frac{1}{2 x}+x^{2}\right)^{15}
$$

Find the
i. sixth term [3]
ii. constant term [4]
iii. term involving $x^{15}$.
(b) Find the equation of a straight line passing through the intersection of $3 x-y=9$ and $x+2 y=-4$, perpendicular to $3=4 y+8 x$.
6. (a) Find the centre and radius of a circle defined by the equation

$$
x^{2}-6 x+y^{2}+10 y+25=0
$$

(b) Give the binomial expansion for $\sqrt[4]{1+5 x}$ up to and including $x^{2}$ (where $x$ is small). Use this expression to find $\sqrt[4]{1.05}$. ( 6 decimal places) [5]
(c) Prove by mathematical induction that the formula

$$
4+8+12+\cdot+4 n=2 n(n+1)
$$

is valid for all positive integers.

