University of Swaziland

Supplementary Examination, July 2014

B.A.S.S. I, B.Comm I, D.Comm I (IDE)

Title of Paper: Algebra, Trigonometry and Analytic GeometryCourse Code: MS101Time Allowed: Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

1

SECTION A: ANSWER ALL QUESTIONS

1.1.	. State the factor theorem.		
1.2.	By using the remainder theorem state which of the following values		
	(a) $x = -\frac{5}{4}$.	[1]	
	(b) $x = \frac{7}{2}$.	[1]	

are roots of the polynomial

$$P(x) = 6x^4 - 35x^3 + 27x^2 + 107x - 105.$$

1.3. Use the long division method to find the quotient and remainder when

$$P(x) = 14x^4 - 16x^3 - 54x^2 - 8$$

is divided by D(x) = x - 3.

- 1.4. Solve the following equations
 - (a) $x^{\frac{2}{3}} = 8.$ [3] (b) $\log_2(2+x) - \log_2(2x-1) = 2.$ [4] (c) $3^{1-2x} = 5^{2-x}.$ [3]
 - (c) $3^{1-2x} = 5^{2-x}$. [3] (d) $x^2 + 3x + 9 = 0$. [3]
- 1.5. Without using a calculator, find the exact value of sin 1215°.
- 1.6. Find three numbers in an arithmetic progression such that their sum is 27 and their product is 504. [5]
- 1.7. Find the determinant of the matrix

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 3 & -2 & 1 \\ 4 & -3 & 2 \end{pmatrix}.$$

[5]

[5]

[3]

1.8. Given $z_1 = 2 + 3i$, $z_2 = 1 - i$ and $z_3 = 3 + 4i$, express $\frac{\overline{z_1} + z_2}{z_3}$ in the form a + ib. [5]

 $\mathbf{2}$

SECTION B: ANSWER ANY 3 QUESTIONS

2. Given the following polynomial

$$P(x) = 3x^4 - x^3 - 29x^2 + 9x + 18$$

- (a) List all the possible roots of P(x). [3]
- (b) Find the number of positive real zeros(roots) of P(x). [3]
- (c) Find the number of negative real zeros(roots) of P(x). [3]
- (d) Use the Remainder theorem and synthetic division (ONLY) to find the roots of P(x). [11]
- 3. (a) Prove the following trigonometric identity

 $\sec^2\theta + \csc^2\theta = \sec^2\theta\csc^2\theta.$

[5]

[7]

[8]

[10]

[5]

(b) Solve the following equations
i.
$$2\cos^2 x + 3\sin x - 3 = 0$$
, $0^\circ \le x \le 360^\circ$
ii. $x^2 = (3 - i)x + 4 = 0$

11.
$$z^2 - (3-i)z + 4 = 0.$$

x	+	2y	+	\boldsymbol{z}	=	1
\boldsymbol{x}		y	-	z	=	0
2x	+	y	+	z	=	3.

(b) Find the sum of the following series

 $1 + 5 + 9 + \dots + 793.$

(c) Convert $2.7343434343434343434\cdots$ into and equivalent fraction. [5]

5. (a) Given the following expansion

$$\left(\frac{1}{2x}+x^2\right)^{15},$$

Find the

i.	sixth term	[3]
ii.	constant term	[4]

- iii. term involving x^{15} . [4]
- (b) Find the equation of a straight line passing through the intersection of 3x y = 9 and x + 2y = -4, perpendicular to 3 = 4y + 8x. [9]

6. (a) Find the centre and radius of a circle defined by the equation

$$x^2 - 6x + y^2 + 10y + 25 = 0.$$

[5]

- (b) Give the binomial expansion for $\sqrt[4]{1+5x}$ up to and including x^2 (where x is small). Use this expression to find $\sqrt[4]{1.05}$. (6 decimal places) [5]
- (c) Prove by mathematical induction that the formula

$$4 + 8 + 12 + \cdot + 4n = 2n(n+1)$$

is valid for all positive integers.

[10]

END

4