University of Swaziland

Final Examination, April 2014

B.A.S.S. I , B.Comm I, D.Comm I (IDE)

```
Title of Paper : Calculus for Business and Social Sciences
Course Code : MS102
Time Allowed : Three (3) Hours
```


Instructions

```
1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS
Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS
Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section \(B\) is worth \(20 \%\).
3. Show all your working.
4. Special requirements: None
```


/

This paper should not be opened until permission has been given by the INVIGILATOR.

SECTION A: COMPULSORY QUESTIONS

QUESTION 1

(a) Evaluate the following limits
(i) $\lim _{x \rightarrow-5} \frac{x^{2}+3 x-10}{x-5}$.
[3 marks]
(ii) $\lim _{x \rightarrow \infty} \frac{x^{2}+6 x-1}{x^{2}-16}$. [3 marks]
(b) Use the limit definition of the derivative to find the derivative $f^{\prime}(x)$ of the function $f(x)=4 x^{2}$
[5 marks]
(c) If $\lim _{x \rightarrow 0} f(x)=2$, then $f(0)=2$. Determine whether the statement is true or false. If it is true, explain why it is true. If it is false, give an example to show why it is false.
(d) Find the derivatives of the following functions
(i) $f(x)=\frac{x+1}{(x+2)^{2}}$.
(ii) $y=e^{2 x+5}$.
(e) Find the slope and equation of the tangent line to the graph of $f(x)=x+\frac{1}{x}$ at the point $(1,2)$.

QUESTION 2

(a) Evaluate the following integrals

(i) $\int_{0}^{1}\left(x^{2}+1\right)^{2} d x$.	$[5$ marks]
(ii) $\int \sin x e^{\cos x} d x$.	$[5$ marks]

(b) Find the area of the region bounded by $f(x)=4-x^{2}$ and the x-axis. [5 marks]

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 3

(a) Evaluate the following limits
(i) $\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}$.
[6 marks]
(ii) $\lim _{x \rightarrow \infty} \sqrt{4 x^{2}-2 x+1}-2 x$.
[6 marks]
(b) Show that the function

$$
f(x)=\left\{\begin{array}{cl}
1, & x=0 \\
\frac{\sin x}{x}, & x \neq 0
\end{array}\right.
$$

is continuous at $x=0$
[8 marks]

QUESTION 4

Find the derivative of the following functions
(a) $f(x)=e^{3 x} \sin \left(4 x^{2}+10 x-3\right)$.
(b) $f(x)=3^{x \cos x}$.
[5 marks]
(c) $y=\left(x^{4}+3 x^{2}\right)^{10}$.
[5 marks]
(d) $y=\ln \left(\frac{\sin x}{e^{x}}\right)$.
[5 marks]

QUESTION 5

For the curve given by

$$
f(x)=x^{3}-12 x+12
$$

find the point where the curve assumes a

(a) local minimum	$[2$ marks $]$
(b) local maximum	$[2$ marks $]$
(c) a point of inflection	$[2$ marks

Find the intervals where the curve is
(d) increasing
(e) decreasing
(f) concave upward
(g) concave downward
(h) using the above information (a) to (g), sketch the curve $\mathrm{f}(\mathrm{x})$

QUESTION 6

The weekly demand for Pulsar DVD recorders is given by the demand equation

$$
p=-0.02 x+300 \quad \text { for } \quad 0 \leq x \leq 15,000
$$

where p denotes the wholesale unit price in Emalangeni and x denotes the quantity demanded. The weekly total cost function associated with manufacturing these recorders is $C(x)=0.000003 x^{3}-0.04 x^{2}+200 x+70,000$ Emalangeni.
(a) Find the revenue function and the profit function.
(b) Find the marginal cost function, the marginal revenue function, and the marginal profit function.
(c) Find the marginal average cost function.

Compute
(d) marginal cost when $x=3000$ and interpret your results
(e) marginal revenue when $x=3000$ and interpret your resulds
(f) marginal profit when $x=3000$ and interpret your results

QUESTION 7

(a) Evaluate the following integrals
(i) $\int_{0}^{1} x \cos x \mathrm{~d} x$
(ii) $\int \frac{x}{x^{2}-4 x+3} \mathrm{~d} x$
(b) Given the demand function $D(x)=20-0.05 x$
and the supply function $S(x)=2+0.0002 x^{2}$
find
$\begin{array}{ll}\text { (i) the equilibrium price } & \text { [3 marks] } \\ \text { (ii) the consumer's surplus } & \text { [3 marks] } \\ \text { (iii) the producer's surplus. } & \text { [4 marks] }\end{array}$

