University of Swaziland

Final Examination, April 2014

B.A.S.S. I, B.Comm I, D.Comm I (IDE)

Title of Paper	: Calculus for Business and Social Sciences
Course Code	: MS102
Time Allowed	: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

- a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
- b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

This paper should not be opened until permission has been given by the invigilator.

1

SECTION A: COMPULSORY QUESTIONS

QUESTION 1

(a) Evaluate the following limits

(i)
$$\lim_{x \to -5} \frac{x^2 + 3x - 10}{x - 5}$$
. [3 marks]
(ii) $\lim_{x \to \infty} \frac{x^2 + 6x - 1}{x^2 - 16}$. [3 marks]

- (b) Use the limit definition of the derivative to find the derivative f'(x) of the function $f(x) = 4x^2$ [5 marks]
- (c) If $\lim_{x\to 0} f(x) = 2$, then f(0) = 2. Determine whether the statement is true or false. If it is true, explain why it is true. If it is false, give an example to show why it is false.

[3 marks]

(d) Find the derivatives of the following functions

(i)
$$f(x) = \frac{x+1}{(x+2)^2}$$
. [3 marks]

(ii)
$$y = e^{2x+5}$$
. [3 marks]

(e) Find the slope and equation of the tangent line to the graph of $f(x) = x + \frac{1}{x}$ at the point (1, 2). [5 marks]

QUESTION 2

(a) Evaluate the following integrals

(i)
$$\int_{0}^{1} (x^{2} + 1)^{2} dx.$$
 [5 marks]
(ii) $\int \sin x \ e^{\cos x} dx.$ [5 marks]

(b) Find the area of the region bounded by $f(x) = 4 - x^2$ and the x-axis. [5 marks]

22

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 3

(a) Evaluate the following limits

;.

(i)
$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16}$$
. [6 marks]
(ii) $\lim_{x \to \infty} \sqrt{4x^2 - 2x + 1} - 2x$. [6 marks]

(b) Show that the function

$$f(x) = \begin{cases} 1, & x = 0;\\ \frac{\sin x}{x}, & x \neq 0. \end{cases}$$

is continuous at x = 0

QUESTION 4

Find the derivative of the following functions

(a)
$$f(x) = e^{3x} \sin(4x^2 + 10x - 3).$$
 [5 marks]

(b)
$$f(x) = 3^{x \cos x}$$
. [5 marks]

(c)
$$y = (x^4 + 3x^2)^{10}$$
. [5 marks]

(d)
$$y = \ln\left(\frac{\sin x}{e^x}\right)$$
. [5 marks]

3

Í

[8 marks]

For the curve given by

 $f(x) = x^3 - 12x + 12$

find the point where the curve assumes a

(a)	local minimum	[2 marks]
(b)	local maximum	[2 marks]
(c)	a point of inflection	[2 marks]
Find	the intervals where the curve is	
(d)	increasing	[2 marks]
(e)	decreasing	[2 marks]
(f)	concave upward	[3 marks]
(g)	concave downward	[3 marks]
(h)	using the above information (a) to (g), sketch the curve $f(x)$	[4 marks]

QUESTION 6

The weekly demand for Pulsar DVD recorders is given by the demand equation

p = -0.02x + 300 for $0 \le x \le 15,000$ where p denotes the wholesale unit price in Emalangeni and x denotes the quantity demanded. The weekly total cost function associated with manufacturing these recorders is $C(x) = 0.000003x^3 - 0.04x^2 + 200x + 70,000$ Emalangeni.

- (a) Find the revenue function and the profit function. [3 marks]
- (b) Find the marginal cost function, the marginal revenue function, and the marginal profit function. [6 marks]
- [2 marks](c) Find the marginal average cost function.

Compute

laiksj
narks]
narks]
)

QUESTION 7

(a) Evaluate the following integrals

(i)
$$\int_{0}^{1} x \cos x \, dx$$
 [5 marks]
(ii)
$$\int \frac{x}{x^{2} - 4x + 3} \, dx$$
 [5 marks]

(b) Given the demand function D(x) = 20 - 0.05xand the supply function $S(x) = 2 + 0.0002x^{2}$ find

· · · ·

(i)	the equilibrium price	[3 marks]
(ii)	the consumer's surplus	[3 marks]
(iii)	the producer's surplus.	[4 marks]

END OF EXAMINATION PAPER

 $\mathbf{5}$

Í