University of Swaziland

Final Examination – November 2014

BASS I

Title of Paper: Elementary Quantitative Techniques ICourse Number: MS011Time Allowed: Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 (out of 4) questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1	a. Simplify			
	i.	$\frac{2}{x+2} - \frac{1}{x+1},$	[5 ma	rks]
	ii.	$\frac{2x^2-x}{2x^2+3x-2},$	[5 ma	rks]
	iii.	$\frac{10x^4b^{-3}}{3a^{-2}y^{-5}} \div \frac{25x^{-3}b^2}{27a^4y^{-3}}$	(expressing your answer in terms of positive indices), $[7 ma$	rks]
	b. Use a calculator to compute (for non-exact answers, express correct to 3 s.f.)			
	i.	$_{24}C_{13}$,	[1 ma	rks]
	ii.	$\log 4500$,	· [1 ma	rks]
	iii.	$\ln 5000,$	[1 ma	rks]
	iv.	$\log_3 500.$	[3 ma	irks]
	c. Use the <i>quadratic formula</i> to solve (expressing your answer correct to 3 s		s.f.)	

$$2x^2 + 25x = 9.$$
 [5 marks]

d. Solve the simultaneous equations

$$\begin{array}{rcl} 2x + 5y &=& 31, \\ 3x - 2y &=& -20. \end{array} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$$

e. Given that

$$A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix},$$

work out

i.	$2A + 3B^T$,	[5 marks]
ii.	A^TB ,	. [[5 marks]
iii.	$C^T A$.	[[5 marks]

Section **B**

Answer ANY 2 Questions in this section

B.1	Use Cramer's rule to solve	
	2x - y + z = 8	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[25 marks]
B.2	a. For the arithmetic progression	
	$10, 14, 18 \cdots,$	
	find	
	i. the formula for the n -th term,	[2 marks]
	ii. the 50th term using the formula in i.,	[2 marks]
	iii. the sum of the first 25 terms.	[4 marks]
	b. Find the value of	
	i. $10 + 20 + 30 + \dots + 5,000$	[4 marks]
	ii. $\sum_{n=1}^{\infty} (2n+3)$	[6 marks]
	c. Use synthetic division to work out	
	$\frac{x^3 - 2x^2 + 3x - 7}{x - 2}.$	[4 marks]

d. Given that x + 2 is a factor of $P(x) = x^3 + Ax^2 + 2x - 4$, find the value of A. [3 marks]

B.3

a. Consider the straight line between A(2, -3) and B(-2, 5). Find

- i. the length of AB correct to 3 s.f.,[2 marks]ii. the gradient of AB,[2 marks]
- ii. the gradient of AB,[2 marks]iii. the equation of AB,[4 marks]
- iv. the equation of the perpendicular bisector of AB. [4 marks]
- b. Use the *binomial theorem* to expand and simplify term by term

$$(x+3)^4.$$
 [6 marks]

[2 marks]

c. In the binomial expansion of

 $\left(x+y\right)^{20},$

find

		*
i.	the first 4 terms,	[4 marks]
ii.	the 16th term.	[3 marks]

B.4

a. Express

- i. $4^3 = 64$ in terms of logs, [2 marks]
- ii. $\log_3 81 = 4$ in exponential form.
- b. Solve (for non-exact answers, express correct to 3 s.f.)

- ii. $3^x = 500$, [4 marks]
- iii. $\log_7(2x-1) = 2$, [4 marks]

c. A new car valued at E430,000 is bought on 01 January 2014. Its value subsequently depreciates according to the formula

 $V(t) = 430,000e^{-0.085t},$

where t is the age of the car in years. Find the

i. value of the car on 31 December 2015, [4 marks]

ii. the date when the car reaches its *half-life*. [6 marks]