## University of Swaziland



# Final Examination - November 2014 

## BASS I

Title of Paper : Elementary Quantitative Techniques I
Course Number : MS011
Time Allowed : Two (2) hours

## Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 2 (out of 4) questions in Section B.
4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

## Section A

## Answer ALL Questions in this section

A. 1 a. Simplify
i. $\frac{2}{x+2}-\frac{1}{x+1}$,
[5 marks]
ii. $\frac{2 x^{2}-x}{2 x^{2}+3 x-2}$,
iii. $\frac{10 x^{4} b^{-3}}{3 a^{-2} y^{-5}} \div \frac{25 x^{-3} b^{2}}{27 a^{4} y^{-3}}$ (expressing your answer in terms of positive indices), [7 marks]
b. Use a calculator to compute (for non-exact answers, express correct to 3 s.f.)
i. ${ }_{24} C_{13}$,
ii. $\log 4500$, $\quad$ [1 marks]
iii. $\ln 5000$,
[1 marks]
iv. $\log _{3} 500$.
c. Use the quadratic formula to solve (expressing your answer correct to 3 s.f.)

$$
2 x^{2}+25 x=9
$$

d. Solve the simultaneous equations

$$
\begin{aligned}
& 2 x+5 y=31 \\
& 3 x-2 y=-20
\end{aligned}
$$

e. Given that

$$
A=\left(\begin{array}{rr}
1 & -2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{rr}
-2 & 1 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & 0 & -2 \\
1 & 2 & 3
\end{array}\right)
$$

work out
i. $2 A+3 B^{T}$,
ii. $A^{T} B$,
iii. $C^{T} A$.

## Section B

## Answer ANY 2 Questions in this section

B. 1 Use Cramer's rule to solve

$$
\begin{aligned}
2 x-y+z & =8 \\
x+y+z & =4 \\
2 y-z & =-5 .
\end{aligned}
$$

B. 2 a. For the arithmetic progression

$$
10,14,18 \cdots
$$

find
i. the formula for the $n$-th term,
ii. the 50th term using the formula in i., [2 marks]
iii. the sum of the first 25 terms. [4 marks]
b. Find the value of
i. $10+20+30+\cdots+5,000$ [4 marks]
ii. $\sum_{n=1}^{50}(2 n+3)$ [6 marks]
c. Use synthetic division to work out

$$
\frac{x^{3}-2 x^{2}+3 x-7}{x-2}
$$

[4 marks]
d. Given that $x+2$ is a factor of $P(x)=x^{3}+A x^{2}+2 x-4$, find the value of $A$.

## B. 3

a. Consider the straight line between $A(2,-3)$ and $B(-2,5)$. Find
i. the length of $A B$ correct to 3 s.f., [2 marks]
ii. the gradient of $A B$, [2 marks]
iii. the equation of $A B$, [4 marks]
iv. the equation of the perpendicular bisector of $A B$. [4 marks]
b. Use the binomial theorem to expand and simplify term by term

$$
(x+3)^{4}
$$

c. In the binomial expansion of

$$
(x+y)^{20}
$$

find
i. the first 4 terms,
ii. the 16 th term. [3 marks]

## B. 4

a. Express
i. $4^{3}=64$ in terms of logs, $\quad$ [2 marks]
ii. $\log _{3} 81=4$ in exponential form. [2 marks]
b. Solve (for non-exact answers, express correct to 3 s.f.)
i. $\quad 5^{x-1}=625$, [3 marks]
ii. $\quad 3^{x}=500$, [4 marks]
iii. $\quad \log _{7}(2 x-1)=2$,
c. A new car valued at $\mathrm{E} 430,000$ is bought on 01 January 2014. Its value subsequently depreciates according to the formula

$$
V(t)=430,000 e^{-0.085 t}
$$

where $t$ is the age of the car in years. Find the
i. value of the car on 31 December 2015,
ii. the date when the car reaches its half-life.

